RESUMO
OBJECTIVE: Signaling lymphocytic activation molecule family members (SLAMFs) play a critical role in immune regulation of malignancies. This study aims to investigate the prognostic value and function of SLAMFs in ovarian cancer (OC). METHODS: The expression analysis of SLAMFs was conducted based on The Cancer Genome Atlas Ovarian Cancer Collection (TCGA-OV) and Gene Expression Omnibus (GEO) databases. Immunohistochemistry (IHC) was further performed on tissue arrays (n=98) to determine the expression of SLAMF7. Kaplan-Meier plotter and multivariate Cox regression model were used to evaluate the correlation of SLAMF7 expression with survival outcomes of patients. The molecular function of SLAMF7 in OC was further investigated using Gene Set Enrichment Analysis (GSEA). RESULTS: SLAMF7 mRNA expression were significantly upregulated in OC tumor tissue compared to normal tissue. IHC revealed that SLAMF7 expression was located in the interstitial parts of tumor tissue, and higher SLAMF7 expression was associated with favorable survival outcomes. GSEA demonstrated that SLAMF7 is involved immune-related pathways. Further analysis showed that SLAMF7 had a strong correlation with the T cell-specific biomarker (CD3) but not with the B cell (CD19, CD22, and CD23) and natural killer cell-specific biomarkers (CD85C, CD336, and CD337). Furthermore, IHC analysis confirmed that SLAMF7 was expressed in tumor-infiltrating T cells, and the IHC score of SLAMF7 was positively correlated with CD3 (r=0.85, p<0.001). CONCLUSION: SLAMF7 is expressed in the interstitial components of clinical OC tissue, and higher SLAMF7 expression indicated a favorable prognosis for patients with OC. Additionally, SLAMF7 is involved in T-cell immune infiltration in OC.
RESUMO
Appropriate additives can provide a suitable physiological environment for storage of fish sperm and facilitate the large-scale breeding of endangered species and commercial fish. Suitable additives for fish sperm storage in vitro are required for artificial insemination. This study evaluate the effects of 0.1, 0.5, 1.5, and 4.5 mg/L selenium nanoparticles (SeNPs) on the quality of Schizothorax prenanti and Onychostoma macrolepis sperm storage in vitro at 4 °C for 72 h. We found that 0.5 mg/L SeNPs was a suitable concentration for maintaining the normal physiological state of O. macrolepis sperm during storage at 4 °C (p < 0.05). Higher adenosine triphosphate (ATP) content of O. macrolepis sperm before and after activation was present at that concentration. To further explore the potential mechanism of action of SeNPs on O. macrolepis sperm, western blotting and glucose uptake analyses were performed. The results implied that after 24 h of in vitro preservation, 0.5 mg/L SeNPs significantly improved p-AMPK levels and glucose uptake capacity of O. macrolepis sperm, while compound C (CC), the inhibitor of activated AMP-activated protein kinase (p-AMPK), significantly restricted the function of SeNPs on stored sperm. Similar effects of 0.5 mg/L SeNPs were found on Schizothorax prenanti sperm. Our study demonstrates that SeNPs maintained ATP content and O. macrolepis and Schizothorax prenanti sperm function during storage in vitro for 72 h, possibly because SeNPs enhanced the glucose uptake capacity of sperm by maintaining the level of p-AMPK.
Assuntos
Nanopartículas , Selênio , Masculino , Animais , Selênio/farmacologia , Proteínas Quinases Ativadas por AMP , Sêmen , Peixes , Trifosfato de Adenosina , GlucoseRESUMO
BACKGROUND: The musk glands of adult male Chinese forest musk deer (Moschus berezovskii Flerov, 1929) (FMD), which are considered as special skin glands, secrete a mixture of sebum, lipids, and proteins into the musk pod. Together, these components form musk, which plays an important role in attracting females during the breeding season. However, the relationship between the musk glands and skin of Chinese FMD remains undiscovered. Here, the musk gland and skin of Chinese FMD were examined using histological analysis and RNA sequencing (RNA-seq), and the expression of key regulatory genes was evaluated to determine whether the musk gland is derived from the skin. METHODS: A comparative analysis of musk gland anatomy between juvenile and adult Chinese FMD was conducted. Then, based on the anatomical structure of the musk gland, skin tissues from the abdomen and back as well as musk gland tissues were obtained from three juvenile FMD. These tissues were used for RNA-seq, hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), western blot (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) experiments. RESULTS: Anatomical analysis showed that only adult male FMD had a complete glandular organ and musk pod, while juvenile FMD did not have any well-developed musk pods. Transcriptomic data revealed that 88.24% of genes were co-expressed in the skin and musk gland tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis found that the genes co-expressed in the abdomen skin, back skin, and musk gland were enriched in biological development, endocrine system, lipid metabolism, and other pathways. Gene Ontology (GO) enrichment analysis indicated that the genes expressed in these tissues were enriched in biological processes such as multicellular development and cell division. Moreover, the Metascape predictive analysis tool demonstrated that genes expressed in musk glands were skin tissue-specific. qRT-PCR and WB revealed that sex-determining region Y-box protein 9 (Sox9),Caveolin-1 (Cav-1), andandrogen receptor (AR) were expressed in all three tissues, although the expression levels differed among the tissues. According to the IHC results, Sox9 and AR were expressed in the nuclei of sebaceous gland, hair follicle, and musk gland cells, whereas Cav-1 was expressed in the cell membrane. CONCLUSIONS: The musk gland of Chinese FMD may be a derivative of skin tissue, and Sox9, Cav-1, and AR may play significant roles in musk gland development.