Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 212(1): 24-34, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975667

RESUMO

Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.


Assuntos
Vacinas contra Influenza , Influenza Humana , Orthomyxoviridae , Humanos , Imunidade Humoral , Estações do Ano , Vacinação , Hemaglutininas , Vacinas Atenuadas , Vacinas de Produtos Inativados , Anticorpos Antivirais
2.
Brain ; 146(10): 4292-4305, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37161609

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the CNS, can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations and persistence of SARS-CoV-2 reservoirs. In this prospective cohort study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common coronaviruses: 229E, HKU1, NL63 and OC43) in the serum and CSF from 112 infected individuals who developed (n = 18) or did not develop (n = 94) neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC compared with serum responses. All antibody isotypes (IgG, IgM, IgA) and subclasses (IgA1-2, IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM). These data argue in favour of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected. Compared to individuals who did not develop post-acute complications following infection, individuals with neuroPASC had similar demographic features (median age 65 versus 66.5 years, respectively, P = 0.55; females 33% versus 44%, P = 0.52) but exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fcγ receptors. However, surprisingly, neuroPASC individuals showed significantly expanded antibody responses to other common coronaviruses, including 229E, HKU1, NL63 and OC43. This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an 'original antigenic sin' (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to the current infection, as a key prognostic marker of neuroPASC disease. Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.


Assuntos
COVID-19 , Feminino , Humanos , Idoso , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Estudos Prospectivos , Imunoglobulina G , Imunoglobulina M
3.
PLoS Comput Biol ; 18(1): e1009728, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986147

RESUMO

Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.


Assuntos
Simulação por Computador , Retinopatia Diabética/fisiopatologia , Microaneurisma/fisiopatologia , Vasos Retinianos/fisiopatologia , Velocidade do Fluxo Sanguíneo/fisiologia , Retinopatia Diabética/diagnóstico por imagem , Eritrócitos/fisiologia , Hematócrito , Humanos , Microaneurisma/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Trombose/diagnóstico por imagem , Trombose/fisiopatologia
4.
PLoS Comput Biol ; 18(3): e1009892, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255089

RESUMO

Emerging clinical evidence suggests that thrombosis in the microvasculature of patients with Coronavirus disease 2019 (COVID-19) plays an essential role in dictating the disease progression. Because of the infectious nature of SARS-CoV-2, patients' fresh blood samples are limited to access for in vitro experimental investigations. Herein, we employ a novel multiscale and multiphysics computational framework to perform predictive modeling of the pathological thrombus formation in the microvasculature using data from patients with COVID-19. This framework seamlessly integrates the key components in the process of blood clotting, including hemodynamics, transport of coagulation factors and coagulation kinetics, blood cell mechanics and adhesive dynamics, and thus allows us to quantify the contributions of many prothrombotic factors reported in the literature, such as stasis, the derangement in blood coagulation factor levels and activities, inflammatory responses of endothelial cells and leukocytes to the microthrombus formation in COVID-19. Our simulation results show that among the coagulation factors considered, antithrombin and factor V play more prominent roles in promoting thrombosis. Our simulations also suggest that recruitment of WBCs to the endothelial cells exacerbates thrombogenesis and contributes to the blockage of the blood flow. Additionally, we show that the recent identification of flowing blood cell clusters could be a result of detachment of WBCs from thrombogenic sites, which may serve as a nidus for new clot formation. These findings point to potential targets that should be further evaluated, and prioritized in the anti-thrombotic treatment of patients with COVID-19. Altogether, our computational framework provides a powerful tool for quantitative understanding of the mechanism of pathological thrombus formation and offers insights into new therapeutic approaches for treating COVID-19 associated thrombosis.


Assuntos
COVID-19/complicações , Microvasos/fisiopatologia , Trombose/fisiopatologia , Trombose/virologia , Anticoagulantes , Coagulação Sanguínea , Biologia Computacional , Humanos , Modelos Biológicos , SARS-CoV-2
5.
Biophys J ; 120(13): 2723-2733, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087210

RESUMO

Hyperviscosity syndrome (HVS) is characterized by an increase of the blood viscosity by up to seven times the normal blood viscosity, resulting in disturbances to the circulation in the vasculature system. HVS is commonly associated with an increase of large plasma proteins and abnormalities in the properties of red blood cells, such as cell interactions, cell stiffness, and increased hematocrit. Here, we perform a systematic study of the effect of each biophysical factor on the viscosity of blood by employing the dissipative particle dynamic method. Our in silico platform enables manipulation of each parameter in isolation, providing a unique scheme to quantify and accurately investigate the role of each factor in increasing the blood viscosity. To study the effect of these four factors independently, each factor was elevated more than its values for a healthy blood while the other factors remained constant, and viscosity measurement was performed for different hematocrits and flow rates. Although all four factors were found to increase the overall blood viscosity, these increases were highly dependent on the hematocrit and the flow rates imposed. The effect of cell aggregation and cell concentration on blood viscosity were predominantly observed at low shear rates, in contrast to the more magnified role of cell rigidity and plasma viscosity at high shear rates. Additionally, cell-related factors increase the whole blood viscosity at high hematocrits compared with the relative role of plasma-related factors at lower hematocrits. Our results, mapped onto the flow rates and hematocrits along the circulatory system, provide a correlation to underpinning mechanisms for HVS findings in different blood vessels.


Assuntos
Viscosidade Sanguínea , Hemorreologia , Biofísica , Simulação por Computador , Hematócrito
6.
Biophys J ; 119(5): 900-912, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814061

RESUMO

Fibrinogen is regarded as the main glycoprotein in the aggregation of red blood cells (RBCs), a normally occurring phenomenon that has a major impact on blood rheology and hemodynamics, especially under pathological conditions, including type 2 diabetes mellitus (T2DM). In this study, we investigate the fibrinogen-dependent aggregation dynamics of T2DM RBCs through patient-specific predictive computational simulations that invoke key parameters derived from microfluidic experiments. We first calibrate our model parameters at the doublet (a rouleau consisting of two aggregated RBCs) level for healthy blood samples by matching the detaching force required to fully separate RBC doublets with measurements using atomic force microscopy and optical tweezers. Using results from companion microfluidic experiments that also provide in vitro quantitative information on cell-cell adhesive dynamics, we then quantify the rouleau dissociation dynamics at the doublet and multiplet (a rouleau consisting of three or more aggregated RBCs) levels for obese patients with or without T2DM. Specifically, we examine the rouleau breakup rate when it passes through microgates at doublet level and investigate the effect of rouleau alignment in altering its breakup pattern at multiplet level. This study seamlessly integrates in vitro experiments and simulations and consequently enhances our understanding of the complex cell-cell interaction, highlighting the importance of the aggregation and disaggregation dynamics of RBCs in patients at increased risk of microvascular complications.


Assuntos
Diabetes Mellitus Tipo 2 , Agregação Eritrocítica , Eritrócitos , Fibrinogênio , Humanos , Pinças Ópticas
7.
Biophys J ; 116(2): 360-371, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30612714

RESUMO

Vaso-occlusive crisis, a common painful complication of sickle cell disease, is a complex process triggered by intercellular adhesive interactions among blood cells and the endothelium in all human organs (e.g., the oxygen-rich lung as well as hypoxic systems such as liver and kidneys). We present a combined experimental-computational study to quantify the adhesive characteristics of sickle mature erythrocytes (SMEs) and irreversibly sickled cells (ISCs) under flow conditions mimicking those in postcapillary venules. We employed an in vitro microfluidic cell adherence assay, which is coated uniformly with fibronectin. We investigated the adhesion dynamics of SMEs and ISCs in pulsatile flow under well-controlled hypoxic conditions, inferring the cell adhesion strength by increasing the flow rate (or wall shear stress (WSS)) until the onset of cell detachment. In parallel, we performed simulations of individual SMEs and ISCs under shear. We introduced two metrics to quantify the adhesion process, the cell aspect ratio (AR) as a function of WSS and its rate of change (the dynamic deformability index). We found that the AR of SMEs decreases significantly with the increase of WSS, consistent between the experiments and simulations. In contrast, the AR of ISCs remains constant in time and independent of the flow rate. The critical WSS value for detaching a single SME in oxygenated state is in the range of 3.9-5.5 Pa depending on the number of adhesion sites; the critical WSS value for ISCs is lower than that of SMEs. Our simulations show that the critical WSS value for SMEs in deoxygenated state is above 6.2 Pa (multiple adhesion sites), which is greater than their oxygenated counterparts. We investigated the effect of cell shear modulus on the detachment process; we found that for the same cell adhesion spring constant, the higher shear modulus leads to an earlier cell detachment from the functionalized surface. These findings may aid in the understanding of individual roles of sickle cell types in sickle cell disease vaso-occlusion.


Assuntos
Anemia Falciforme/sangue , Adesão Celular , Deformação Eritrocítica , Eritrócitos Anormais/citologia , Hipóxia Celular , Eritrócitos Anormais/fisiologia , Humanos , Microfluídica , Oxigênio/metabolismo , Fluxo Pulsátil
8.
Sci Rep ; 14(1): 22741, 2024 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349500

RESUMO

Patients with type 2 diabetes mellitus (T2DM) who have severe hypoglycemia (SH) poses a considerable risk of long-term death, especially among the elderly, demanding urgent medical attention. Accurate prediction of SH remains challenging due to its multifaced nature, contributed from factors such as medications, lifestyle choices, and metabolic measurements. In this study, we propose a systematic approach to improve the robustness and accuracy of SH predictions using machine learning models, guided by clinical feature selection. Our focus is on developing long-term SH prediction models using both semi-supervised learning and supervised learning algorithms. Using the action to control cardiovascular risk in diabetes trial, which includes electronic health records for over 10,000 individuals, we focus on studying adults with T2DM. Our results indicate that the application of a multi-view co-training method, incorporating the random forest algorithm, improves the specificity of SH prediction, while the same setup with Naive Bayes replacing random forest demonstrates better sensitivity. Our framework also provides interpretability of machine learning models by identifying key predictors for hypoglycemia, including fasting plasma glucose, hemoglobin A1c, general diabetes education, and NPH or L insulins. The integration of data routinely available in electronic health records significantly enhances our model's capability to predict SH events, showcasing its potential to transform clinical practice by facilitating early interventions and optimizing patient management. By enhancing prediction accuracy and identifying crucial predictive features, our study contributes to advancing the understanding and management of hypoglycemia in this population.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Aprendizado de Máquina , Diabetes Mellitus Tipo 2/complicações , Humanos , Feminino , Masculino , Glicemia/metabolismo , Idoso , Pessoa de Meia-Idade , Algoritmos , Registros Eletrônicos de Saúde , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas/metabolismo
9.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585939

RESUMO

The on-going diversification of influenza virus necessicates annual vaccine updating. The vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific neutralizing activity, predicting that sequential immunization with the same HA strain will boost antibodies with narrow coverage. However, repeated vaccination with homologous SARS-CoV-2 vaccine eventually elicits neutralizing activity against highly unmatched variants, questioning this immunological premise. We evaluated a longitudinal influenza vaccine cohort, where each year the subjects received the same, novel H1N1 2009 pandemic vaccine strain. Repeated vaccination gradually enhanced receptor-blocking antibodies (HAI) to highly unmatched H1N1 strains within individuals with no initial memory recall against these historical viruses. An in silico model of affinity maturation in germinal centers integrated with a model of differentiation and expansion of memory cells provides insight into the mechanisms underlying these results and shows how repeated exposure to the same immunogen can broaden the antibody response against diversified targets.

10.
STAR Protoc ; 5(1): 102858, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294907

RESUMO

In deep tissue, optogenetics faces limitations with visible light. Here, we present a protocol for near-infrared (NIR) optogenetics manipulation of neurons and motor behavior in Caenorhabditis elegans using emissive upconversion nanoparticles (UCNPs). We describe steps for synthesizing and modifying UCNPs. We then detail procedures for regulating neurons using these UCNPs in the model organism C. elegans. Using NIR light allows for superior tissue penetration to manipulate neuronal activities and locomotion behavior. For complete details on the use and execution of this protocol, please refer to Guo et al.,1 Ao et al.,2 and Zhang et al.3.


Assuntos
Caenorhabditis elegans , Nanopartículas , Animais , Optogenética/métodos , Neurônios/fisiologia , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA