Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 114(6): 1203-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24875633

RESUMO

BACKGROUND AND AIMS: Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. METHODS: Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. KEY RESULTS: The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. CONCLUSIONS: The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae.


Assuntos
Parede Celular/química , Matriz Extracelular/metabolismo , Phaeophyceae/química , Polissacarídeos/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Celulose/metabolismo , Fucose/metabolismo , Modelos Estruturais , Phaeophyceae/metabolismo , Phaeophyceae/ultraestrutura
2.
Carbohydr Polym ; 175: 395-408, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917882

RESUMO

Studies on brown algal cell walls have entered a new phase with the concomitant discovery of novel polysaccharides present in cell walls and the establishment of a comprehensive generic model for cell wall architecture. Brown algal cell walls are composites of structurally complex polysaccharides. In this review we discuss the most recent progress in the structural composition of brown algal cell walls, emphasizing the significance of extraction and screening techniques, and the biological activities of the corresponding polysaccharides, with a specific focus on the fucose-containing sulfated polysaccharides. They include valuable marine molecules that exert a broad range of pharmacological properties such as antioxidant and anti-inflammatory activities, functions in the regulation of immune responses and of haemostasis, anti-infectious and anticancer actions. We identify the key remaining challenges in this research field.


Assuntos
Parede Celular/química , Fucose/química , Phaeophyceae/química , Polissacarídeos/química , Sulfatos/química , Polissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA