Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 143(13): 1242-1258, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38096363

RESUMO

ABSTRACT: To establish a strict p53-dependent gene-expression profile, TP53-/- clones were derived from TP53+/+ and TP53-/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53-/- clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation-coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Pirimidinas , Tiofenos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Apoptose , Antineoplásicos/uso terapêutico
2.
Nat Cancer ; 4(11): 1536-1543, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37653140

RESUMO

Bispecific antibodies targeting GPRC5D demonstrated promising efficacy in multiple myeloma, but acquired resistance usually occurs within a few months. Using a single-nucleus multi-omic strategy in three patients from the MYRACLE cohort (ClinicalTrials.gov registration: NCT03807128 ), we identified two resistance mechanisms, by bi-allelic genetic inactivation of GPRC5D or by long-range epigenetic silencing of its promoter and enhancer regions. Molecular profiling of target genes may help to guide the choice of immunotherapy and early detection of resistance in multiple myeloma.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Humanos , Anticorpos Biespecíficos/uso terapêutico , Epigênese Genética , Imunoterapia/métodos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Linfócitos T
3.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524526

RESUMO

Among glucocorticoids (GCs), dexamethasone (Dex) is widely used in treatment of multiple myelomas. However, despite a definite benefit, all patients relapse. Moreover, the molecular basis of glucocorticoid efficacy remains elusive. To determine genomic response to Dex in myeloma cells, we generated bulk and single-cell multi-omics data and high-resolution contact maps of active enhancers and target genes. We show that a minority of glucocorticoid receptor-binding sites are associated with enhancer activity gains, increased interaction loops, and transcriptional activity. We identified and characterized a predominant enhancer enriched in cohesin (RAD21) and more accessible upon Dex exposure. Analysis of four gene-specific networks revealed the importance of the CTCF-cohesin couple and the synchronization of regulatory sequence openings for efficient transcription in response to Dex. Notably, these epigenomic changes are associated with cell-to-cell transcriptional heterogeneity, in particular, lineage-specific genes. As consequences, BCL2L11-encoding BIM critical for Dex-induced apoptosis and CXCR4 protective from chemotherapy-induced apoptosis are rather up-regulated in different cells. In summary, our work provides new insights into the molecular mechanisms involved in Dex escape.


Assuntos
Dexametasona , Mieloma Múltiplo , Humanos , Dexametasona/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Recidiva Local de Neoplasia , Glucocorticoides , Apoptose , Receptores de Glucocorticoides/genética
4.
Genome Med ; 13(1): 127, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372935

RESUMO

BACKGROUND: Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. METHODS: Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. RESULTS: We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. CONCLUSIONS: We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Mieloma Múltiplo/genética , Transcriptoma , Biologia Computacional/métodos , Ilhas de CpG , Suscetibilidade a Doenças , Epigenômica/métodos , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , Prognóstico , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA