RESUMO
Light Detection and Ranging (LiDAR) sensors at signalized intersections can accurately track the movement of virtually all objects passing through at high sampling rates. This study presents methodologies to estimate vehicle and pedestrian traffic signal performance measures using LiDAR trajectory data. Over 15,000,000 vehicle and 170,000 pedestrian waypoints detected during a 24 h period at an intersection in Utah are analyzed to describe the proposed techniques. Sampled trajectories are linear referenced to generate Purdue Probe Diagrams (PPDs). Vehicle-based PPDs are used to estimate movement level turning counts, 85th percentile queue lengths (85QL), arrivals on green (AOG), highway capacity manual (HCM) level of service (LOS), split failures (SF), and downstream blockage (DSB) by time of day (TOD). Pedestrian-based PPDs are used to estimate wait times and the proportion of people that traverse multiple crosswalks. Although vehicle signal performance can be estimated from several days of aggregated connected vehicle (CV) data, LiDAR data provides the ability to measure performance in real time. Furthermore, LiDAR can measure pedestrian speeds. At the studied location, the 15th percentile pedestrian walking speed was estimated to be 3.9 ft/s. The ability to directly measure these pedestrian speeds allows agencies to consider alternative crossing times than those suggested by the Manual on Uniform Traffic Control Devices (MUTCD).
RESUMO
Forensic crash investigation often requires developing detailed profiles showing the location and extent of vehicle damage to identify impact areas, impact direction, deformation, and estimated vehicle speeds at impact. Traditional damage profiling techniques require extended and comprehensive setups for mapping and measurement that are quite labor- and time-intensive. Due to the time involved, this damage profiling is usually done in a remote holding area after the crash scene is cleared. Light detection and ranging (LiDAR) scanning technology in consumer handheld electronic devices, such as smartphones and tablets, holds significant potential for conducting this damage profile mapping in just a few minutes, allowing the mapping to be conducted at the scene before the vehicle(s) are moved. However, there is limited research and even scarcer published literature on field procedures and/or accuracy for these emerging smartphones and tablets with LiDAR. This paper proposes a methodology and subsequent measurement accuracy comparisons for survey-grade terrestrial laser scanning (TLS) and handheld alternatives. The maximum root mean square error (RMSE) obtained for profile distance between handheld (iPad) and survey-grade TLS LiDAR scans for a damaged vehicle was observed to be 3 cm, a level of accuracy that is likely sufficient and acceptable for most forensic studies.