RESUMO
Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.
Assuntos
Adenocarcinoma de Pulmão , Reprogramação Celular , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Reprogramação Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismoRESUMO
The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.
Assuntos
COVID-19/virologia , Pulmão/citologia , Modelos Biológicos , Organoides/citologia , Organoides/virologia , SARS-CoV-2/fisiologia , Técnicas de Cultura de Tecidos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , COVID-19/metabolismo , COVID-19/patologia , Diferenciação Celular , Divisão Celular , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/virologia , Humanos , Técnicas In Vitro , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/fisiologia , Integrina alfa6/análise , Integrina beta4/análise , Queratina-5/análise , Organoides/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2/crescimento & desenvolvimento , Análise de Célula Única , Receptor de TWEAK/análiseRESUMO
Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Sistemas CRISPR-Cas , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Mutação , Células-Tronco/metabolismoRESUMO
Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.
Assuntos
Síndrome do Desconforto Respiratório , Humanos , Pulmão , Fatores de Risco , Índice de Gravidade de Doença , TóraxRESUMO
INTRODUCTION: Chronic lung disease, that is, bronchopulmonary dysplasia (BPD) is the most common complication in preterm infants and develops as a consequence of the misguided formation of the gas-exchange area undergoing prenatal and postnatal injury. Subsequent vascular disease and its progression into pulmonary arterial hypertension critically determines long-term outcome in the BPD infant but lacks identification of early, disease-defining changes. METHODS: We link impaired bone morphogenetic protein (BMP) signalling to the earliest onset of vascular pathology in the human preterm lung and delineate the specific effects of the most prevalent prenatal and postnatal clinical risk factors for lung injury mimicking clinically relevant conditions in a multilayered animal model using wild-type and transgenic neonatal mice. RESULTS: We demonstrate (1) the significant reduction in BMP receptor 2 (BMPR2) expression at the onset of vascular pathology in the lung of preterm infants, later mirrored by reduced plasma BMP protein levels in infants with developing BPD, (2) the rapid impairment (and persistent change) of BMPR2 signalling on postnatal exposure to hyperoxia and mechanical ventilation, aggravated by prenatal cigarette smoke in a preclinical mouse model and (3) a link to defective alveolar septation and matrix remodelling through platelet derived growth factor-receptor alpha deficiency. In a treatment approach, we partially reversed vascular pathology by BMPR2-targeted treatment with FK506 in vitro and in vivo. CONCLUSION: We identified impaired BMP signalling as a hallmark of early vascular disease in the injured neonatal lung while outlining its promising potential as a future biomarker or therapeutic target in this growing, high-risk patient population.
Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesões do Sistema Vascular , Lactente , Recém-Nascido , Humanos , Camundongos , Animais , Recém-Nascido Prematuro , Lesões do Sistema Vascular/complicações , Lesões do Sistema Vascular/patologia , Displasia Broncopulmonar/etiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão , Camundongos Transgênicos , Fatores de Risco , Animais Recém-NascidosRESUMO
The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.
Assuntos
Estado Terminal , Pneumopatias , Terapia Baseada em Transplante de Células e Tecidos , Estado Terminal/terapia , Terapia Genética , Humanos , Pneumopatias/genética , Pneumopatias/terapia , Células-TroncoRESUMO
RATIONALE: αv integrins, key regulators of transforming growth factor-ß activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvß6) and fibroblasts (αvß1) in fibrotic lungs. OBJECTIVES: We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS: Selective αvß6 and αvß1, dual αvß6/αvß1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-ß cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-ß signaling. Bleomycin-challenged mice treated with dual αvß6/αvß1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS: Inhibition of integrins αvß6 and αvß1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvß6/αvß1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS: In the fibrotic lung, dual inhibition of integrins αvß6 and αvß1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-ß.
Assuntos
Antifibróticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Integrina alfa6beta1/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Receptores de Vitronectina/antagonistas & inibidores , Animais , Bleomicina , Linhagem Celular , Técnicas de Cocultura , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Integrina alfa6beta1/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Receptores de Vitronectina/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismoRESUMO
Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested that AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that, during development, AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 cells derive from rare, self-renewing, long-lived, mature AT2 cells that produce slowly expanding clonal foci of alveolar renewal. This stem-cell function is broadly activated by AT1 injury, and AT2 self-renewal is selectively induced by EGFR (epidermal growth factor receptor) ligands in vitro and oncogenic Kras(G12D) in vivo, efficiently generating multifocal, clonal adenomas. Thus, there is a switch after birth, when AT2 cells function as stem cells that contribute to alveolar renewal, repair and cancer. We propose that local signals regulate AT2 stem-cell activity: a signal transduced by EGFR-KRAS controls self-renewal and is hijacked during oncogenesis, whereas another signal controls reprogramming to AT1 fate.
Assuntos
Neoplasias Pulmonares/patologia , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/patologia , Alvéolos Pulmonares/citologia , Regeneração , Animais , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Reprogramação Celular , Células Clonais/citologia , Receptores ErbB/metabolismo , Feminino , Pulmão/embriologia , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Modelos Biológicos , Células-Tronco Multipotentes/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de SinaisRESUMO
The mammalian lung is a highly branched network in which the distal regions of the bronchial tree transform during development into a densely packed honeycomb of alveolar air sacs that mediate gas exchange. Although this transformation has been studied by marker expression analysis and fate-mapping, the mechanisms that control the progression of lung progenitors along distinct lineages into mature alveolar cell types are still incompletely known, in part because of the limited number of lineage markers and the effects of ensemble averaging in conventional transcriptome analysis experiments on cell populations. Here we show that single-cell transcriptome analysis circumvents these problems and enables direct measurement of the various cell types and hierarchies in the developing lung. We used microfluidic single-cell RNA sequencing (RNA-seq) on 198 individual cells at four different stages encompassing alveolar differentiation to measure the transcriptional states which define the developmental and cellular hierarchy of the distal mouse lung epithelium. We empirically classified cells into distinct groups by using an unbiased genome-wide approach that did not require a priori knowledge of the underlying cell types or the previous purification of cell populations. The results confirmed the basic outlines of the classical model of epithelial cell-type diversity in the distal lung and led to the discovery of many previously unknown cell-type markers, including transcriptional regulators that discriminate between the different populations. We reconstructed the molecular steps during maturation of bipotential progenitors along both alveolar lineages and elucidated the full life cycle of the alveolar type 2 cell lineage. This single-cell genomics approach is applicable to any developing or mature tissue to robustly delineate molecularly distinct cell types, define progenitors and lineage hierarchies, and identify lineage-specific regulatory factors.
Assuntos
Linhagem da Célula/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Pulmão/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Brônquios/citologia , Diferenciação Celular/genética , Células Epiteliais/classificação , Feminino , Marcadores Genéticos , Genoma/genética , Genômica , Pulmão/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/citologia , Troca Gasosa Pulmonar , Células-Tronco/citologia , Transcriptoma/genéticaRESUMO
GW182 (also known asTNRC6) family members are critically involved in the final effector phase of miRNA-mediated mRNA repression. The three mammalian paralogs, TNRC6a, b and c, are thought to be redundant based on Argonaute (Ago) binding, tethering assays, and RNAi silencing of individual members in cell lines. To test this idea, we generated TNRC6a, b and c knockout mice. TNRC6a mutants die at mid-gestation, while b- and c- deleted mice are born at a Mendelian ratio. However, the majority of TNRC6b and all TNRC6c mutants die within 24h after birth, the latter with respiratory failure. Necropsy of TNRC6c mutants revealed normal-appearing airways that give rise to abnormally thick-walled distal gas exchange sacs. Immunohistological analysis of mutant lungs demonstrated a normal distribution of bronchiolar and alveolar cells, indicating that loss of TNRC6c did not abrogate epithelial cell differentiation. The cellular kinetics and relative proportions of endothelial, epithelial, and mesenchymal cells were also not altered. However, the underlying capillary network was simplified and endothelial cells had failed to become tightly apposed to the surface epithelium in TNRC6c mutants, presumably causing the observed respiratory failure. TGFß family mutant mice exhibit a similar lung phenotype of thick-walled air sacs and neonatal lethality, and qRT-PCR confirmed dynamic downregulation of TGFß1 and TGFßR2 in TNRC6c mutant lungs during sacculation. VEGFR, but not VEGF-A ligand, was also lower, likely reflecting the overall reduced capillary density in TNRC6c mutants. Together, these results demonstrate that GW182 paralogs are not functionally redundant in vivo. Surprisingly, despite regulating a general cellular process, TNRC6c is selectively required only in the distal lung and not until late in gestation for proper expression of the TGFß family genes that drive sacculation. These results imply a complex and indirect mode of regulation of sacculation by TNRC6c, mediated in part by dynamic transcriptional repression of an inhibitor of TGFß family gene expression.
Assuntos
Autoantígenos/metabolismo , Pulmão/irrigação sanguínea , Pulmão/embriologia , Microvasos/embriologia , Microvasos/metabolismo , Organogênese , Proteínas de Ligação a RNA/metabolismo , Repetições de Trinucleotídeos/genética , Animais , Autoantígenos/genética , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Gases/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Pulmão/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Organogênese/genética , Proteínas de Ligação a RNA/genética , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Gravação em VídeoRESUMO
The application of in vivo genetic lineage tracing has advanced our understanding of cellular mechanisms for tissue renewal in organs with slow turnover, like the lung. These studies have identified an adult stem cell with very different properties than classically understood ones that maintain continuously cycling tissues such as the intestine. A portrait has emerged of an ensemble of cellular programs that replenish the cells that line the gas exchange (alveolar) surface, enabling a response tailored to the extent of cell loss. A capacity for differentiated cells to undergo direct lineage transitions allows for local restoration of proper cell balance at sites of injury. We present these recent findings as a paradigm for how a relatively quiescent tissue compartment can maintain homeostasis throughout a lifetime punctuated by injuries ranging from mild to life-threatening, and discuss how dysfunction or insufficiency of alveolar repair programs produce serious health consequences like cancer and fibrosis.
Assuntos
Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/fisiologia , Animais , Brônquios/fisiologia , Gases/metabolismo , Humanos , Neoplasias/patologia , Fenótipo , Células-Tronco/citologiaRESUMO
PURPOSE OF REVIEW: Childhood interstitial lung diseases (ILDs) are a diverse class of disorders affecting the alveolar gas exchange region that lack specific treatments and are usually fatal. Here, we integrate recent insights into alveolar cell biology with histopathology from well characterized mutations of surfactant-associated genes. We take a reductionist approach by parsing discrete histological features and correlating each to perturbation of a particular function of the alveolar epithelial type II (AT2) cell, the central driver of disease, to generate a working model for the cellular mechanisms of disease pathogenesis. RECENT FINDINGS: The application of genetically modified mice and single cell genomics has yielded new insights into lung biology, including the identification of a bipotent alveolar progenitor in development, mapping of adult AT2 stem cells in vivo, and demonstration that latent cooperative interactions with fibroblasts can be pathologically activated by targeted injury of the AT2 cell. SUMMARY: As we learn more about individual and cooperative roles for alveolar cells in health, we can dissect how perturbations of specific cellular functions contribute to disease in childhood ILDs. We hope our updated model centered around the AT2 cell as the initiator of disease provides a cellular framework that researchers can build upon and revise as they identify the specific molecular signals within and between alveolar cells that mediate the diverse pathologic features, so that targeted pharmacologic and cell-based treatments for patients can ultimately be engineered.
Assuntos
Doenças Pulmonares Intersticiais/patologia , Pulmão/patologia , Alvéolos Pulmonares/patologia , Animais , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Criança , Modelos Animais de Doenças , Humanos , Pulmão/citologia , Doenças Pulmonares Intersticiais/genética , Camundongos , Alvéolos Pulmonares/citologia , Transdução de SinaisRESUMO
With each breath, oxygen diffuses across remarkably thin alveolar type I (AT1) cells into underlying capillaries. Interspersed cuboidal AT2 cells produce surfactant and act as stem cells. Even transient disruption of this delicate barrier can promote capillary leak. Here, we selectively ablated AT1 cells, which uncovered rapid AT2 cell flattening with near-continuous barrier preservation, culminating in AT1 differentiation. Proliferation subsequently restored depleted AT2 cells in two phases, mitosis of binucleated AT2 cells followed by replication of mononucleated AT2 cells. M phase entry of binucleated and S phase entry of mononucleated cells were both triggered by AT1-produced hbEGF signaling via EGFR to Wnt-active AT2 cells. Repeated AT1 cell killing elicited exuberant AT2 proliferation, generating aberrant daughter cells that ceased surfactant function yet failed to achieve AT1 differentiation. This hyperplasia eventually resolved, yielding normal-appearing alveoli. Overall, this specialized regenerative program confers a delicate simple epithelium with functional resiliency on par with the physical durability of thicker, pseudostratified, or stratified epithelia.
Assuntos
Pulmão , Células-Tronco , Tensoativos , Diferenciação Celular , Divisão Celular , Células Cultivadas , Células-Tronco/citologiaRESUMO
We present an in-depth single-cell atlas of in vitro multiculture systems on human primary airway epithelium derived from normal and diseased lungs of 27 individual donors. Our large-scale single-cell profiling identified new cell states and differentiation trajectories of rare airway epithelial cell types in human distal lungs. By integrating single-cell datasets of human lung tissues, we discovered immune-primed subsets enriched in lungs and organoids derived from patients with chronic respiratory disease. To demonstrate the full potential of our platform, we further illustrate transcriptomic responses to various respiratory virus infections in vitro airway models. Our work constitutes a single-cell roadmap for the cellular and molecular characteristics of human primary lung cells in vitro and their relevance to human tissues in vivo.
Assuntos
Células Epiteliais , Pulmão , Humanos , Células Epiteliais/metabolismo , Epitélio , Diferenciação Celular/fisiologia , OrganoidesRESUMO
The lung's gas exchange surface is comprised of alveolar AT1 and AT2 cells that are corrupted in several common and deadly diseases. They arise from a bipotent progenitor whose differentiation is thought to be dictated by differential mechanical forces. Here we show the critical determinant is FGF signaling. Fgfr2 is expressed in the developing progenitors in mouse then restricts to nascent AT2 cells and remains on throughout life. Its ligands are expressed in surrounding mesenchyme and can, in the absence of exogenous mechanical cues, induce progenitors to form alveolospheres with intermingled AT2 and AT1 cells. FGF signaling directly and cell autonomously specifies AT2 fate; progenitors lacking Fgfr2 in vitro and in vivo exclusively acquire AT1 fate. Fgfr2 loss in AT2 cells perinatally results in reprogramming to AT1 identity, whereas loss or inhibition later in life triggers AT2 apoptosis and compensatory regeneration. We propose that Fgfr2 signaling selects AT2 fate during development, induces a cell non-autonomous AT1 differentiation signal, then continuously maintains AT2 identity and survival throughout life.
Assuntos
Células Epiteliais Alveolares , Mesoderma , Animais , Camundongos , Diferenciação Celular , Transdução de Sinais , ApoptoseRESUMO
As the world responds to the global crisis of the COVID-19 pandemic an increasing number of patients are experiencing increased morbidity as a result of multi-organ involvement. Of these, a small proportion will progress to end-stage lung disease, become dialysis dependent, or both. Herein, we describe the first reported case of a successful combined lung and kidney transplantation in a patient with COVID-19. Lung transplantation, isolated or combined with other organs, is feasible and should be considered for select patients impacted by this deadly disease.
Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/cirurgia , COVID-19/complicações , COVID-19/cirurgia , Transplante de Rim , Transplante de Pulmão , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/cirurgia , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
The distal lung is a honeycomb-like collection of delicate gas exchange sacs called alveoli lined by two interspersed epithelial cell types: the cuboidal, surfactant-producing alveolar type II (AT2) and the flat, gas-exchanging alveolar type I (AT1) cell. During aging, a subset of AT2 cells expressing the canonical Wnt target gene, Axin2, function as stem cells, renewing themselves while generating new AT1 and AT2 cells. Wnt activity endows AT2 cells with proliferative competency, enabling them to respond to activating cues, and simultaneously blocks AT2 to AT1 cell transdifferentiation. Acute alveolar injury rapidly expands the AT2 stem cell pool by transiently inducing Wnt signaling activity in "bulk" AT2 cells, facilitating rapid epithelial repair. AT2 cell "stemness" is thus tightly regulated by access to Wnts, supplied by a specialized single-cell fibroblast niche during maintenance and by AT2 cells themselves during injury repair. Two non-AT2 "reserve" cell populations residing in the distal airways also contribute to alveolar repair, but only after widespread epithelial injury, when they rapidly proliferate, migrate, and differentiate into airway and alveolar lineages. Here, we review alveolar renewal and repair with a focus on the niches, rather than the stem cells, highlighting what is known about the cellular and molecular mechanisms by which they control stem cell activity in vivo.
Assuntos
Células Epiteliais Alveolares/fisiologia , Regeneração , Nicho de Células-Tronco , Envelhecimento/fisiologia , Animais , Humanos , Via de Sinalização WntRESUMO
Understanding tissues in the context of development, maintenance and disease requires determining the molecular profiles of individual cells within their native in vivo spatial context. We developed a Proximity Ligation in situ Hybridization technology (PLISH) that enables quantitative measurement of single cell gene expression in intact tissues, which we have now updated. By recording spatial information for every profiled cell, PLISH enables retrospective mapping of distinct cell classes and inference of their in vivo interactions. PLISH has high sensitivity, specificity and signal to noise ratio. It is also rapid, scalable, and does not require expertise in molecular biology so it can be easily adopted by basic and clinical researchers.
RESUMO
Cystic fibrosis (CF) is a monogenic disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Mortality in CF patients is mostly due to respiratory sequelae. Challenges with gene delivery have limited attempts to treat CF using in vivo gene therapy, and low correction levels have hindered ex vivo gene therapy efforts. We have used Cas9 and adeno-associated virus 6 to correct the ΔF508 mutation in readily accessible upper-airway basal stem cells (UABCs) obtained from CF patients. On average, we achieved 30%-50% allelic correction in UABCs and bronchial epithelial cells (HBECs) from 10 CF patients and observed 20%-50% CFTR function relative to non-CF controls in differentiated epithelia. Furthermore, we successfully embedded the corrected UABCs on an FDA-approved porcine small intestinal submucosal membrane (pSIS), and they retained differentiation capacity. This study supports further development of genetically corrected autologous airway stem cell transplant as a treatment for CF.