Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739784

RESUMO

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Assuntos
Plumas , Mercúrio , Animais , Mercúrio/análise , Oceano Atlântico , Plumas/química , Regiões Árticas , Groenlândia , Monitoramento Ambiental/métodos , Aves , Cadeia Alimentar , Poluentes Químicos da Água/análise , Ecossistema
2.
Nature ; 580(7801): 87-92, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238927

RESUMO

Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


Assuntos
Sistemas de Identificação Animal , Organismos Aquáticos/fisiologia , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/métodos , Ecossistema , Oceanos e Mares , Comportamento Predatório , Animais , Regiões Antárticas , Biodiversidade , Aves , Peixes , Cadeia Alimentar , Camada de Gelo , Mamíferos , Dinâmica Populacional
3.
Glob Chang Biol ; 29(7): 1729-1740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36700347

RESUMO

Climate change is most strongly felt in the polar regions of the world, with significant impacts on the species that live there. The arrival of parasites and pathogens from more temperate areas may become a significant problem for these populations, but current observations of parasite presence often lack a historical reference of prior absence. Observations in the high Arctic of the seabird tick Ixodes uriae suggested that this species expanded poleward in the last two decades in relation to climate change. As this tick can have a direct impact on the breeding success of its seabird hosts and vectors several pathogens, including Lyme disease spirochaetes, understanding its invasion dynamics is essential for predicting its impact on polar seabird populations. Here, we use population genetic data and host serology to test the hypothesis that I. uriae recently expanded into Svalbard. Both black-legged kittiwakes (Rissa tridactyla) and thick-billed murres (Uria lomvia) were sampled for ticks and blood in Kongsfjorden, Spitsbergen. Ticks were genotyped using microsatellite markers and population genetic analyses were performed using data from 14 reference populations from across the tick's northern distribution. In contrast to predictions, the Spitsbergen population showed high genetic diversity and significant differentiation from reference populations, suggesting long-term isolation. Host serology also demonstrated a high exposure rate to Lyme disease spirochaetes (Bbsl). Targeted PCR and sequencing confirmed the presence of Borrelia garinii in a Spitsbergen tick, demonstrating the presence of Lyme disease bacteria in the high Arctic for the first time. Taken together, results contradict the notion that I. uriae has recently expanded into the high Arctic. Rather, this tick has likely been present for some time, maintaining relatively high population sizes and an endemic transmission cycle of Bbsl. Close future observations of population infestation/infection rates will now be necessary to relate epidemiological changes to ongoing climate modifications.


Assuntos
Charadriiformes , Ixodes , Doença de Lyme , Doenças Transmitidas por Carrapatos , Animais , Mudança Climática , Ixodes/genética , Ixodes/microbiologia , Genética Populacional
4.
J Anim Ecol ; 91(9): 1797-1812, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35675093

RESUMO

Timing of breeding, an important driver of fitness in many populations, is widely studied in the context of global change, yet despite considerable efforts to identify environmental drivers of seabird nesting phenology, for most populations we lack evidence of strong drivers. Here we adopt an alternative approach, examining the degree to which different populations positively covary in their annual phenology to infer whether phenological responses to environmental drivers are likely to be (a) shared across species at a range of spatial scales, (b) shared across populations of a species or (c) idiosyncratic to populations. We combined 51 long-term datasets on breeding phenology spanning 50 years from nine seabird species across 29 North Atlantic sites and examined the extent to which different populations share early versus late breeding seasons depending on a hierarchy of spatial scales comprising breeding site, small-scale region, large-scale region and the whole North Atlantic. In about a third of cases, we found laying dates of populations of different species sharing the same breeding site or small-scale breeding region were positively correlated, which is consistent with the hypothesis that they share phenological responses to the same environmental conditions. In comparison, we found no evidence for positive phenological covariation among populations across species aggregated at larger spatial scales. In general, we found little evidence for positive phenological covariation between populations of a single species, and in many instances the inter-year variation specific to a population was substantial, consistent with each population responding idiosyncratically to local environmental conditions. Black-legged kittiwake Rissa tridactyla was the exception, with populations exhibiting positive covariation in laying dates that decayed with the distance between breeding sites, suggesting that populations may be responding to a similar driver. Our approach sheds light on the potential factors that may drive phenology in our study species, thus furthering our understanding of the scales at which different seabirds interact with interannual variation in their environment. We also identify additional systems and phenological questions to which our inferential approach could be applied.


Assuntos
Charadriiformes , Animais , Mudança Climática , Estações do Ano
5.
Glob Chang Biol ; 27(16): 3753-3764, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34031960

RESUMO

The current warming of the oceans has been shown to have detrimental effects for a number of species. An understanding of the underlying mechanisms may be hampered by the non-linearity and non-stationarity of the relationships between temperature and demography, and by the insufficient length of available time series. Most demographic time series are too short to study the effects of climate on wildlife in the classical sense of meteorological patterns over at least 30 years. Here we present a harvest time series of Atlantic puffins (Fratercula arctica) that goes back as far as 1880. It originates in the world's largest puffin colony, in southwest Iceland, which has recently experienced a strong decline. By estimating an annual chick production index for 128 years, we found prolonged periods of strong correlations between local sea surface temperature (SST) and chick production. The sign of decennial correlations switches three times during this period, where the phases of strong negative correlations between puffin productivity and SST correspond to the early 20th century Arctic warming period and to the most recent decades. Most of the variation (72%) in chick production is explained by a model in which productivity peaks at an SST of 7.1°C, clearly rejecting the assumption of a linear relationship. There is also evidence supporting non-stationarity: The SST at which puffins production peaked has increased by 0.24°C during the 20th century, although the increase in average SST during the same period has been more than three times faster. The best supported models indicate that the population's decline is at least partially caused by the increasing SST around Iceland.


Assuntos
Charadriiformes , Animais , Regiões Árticas , Oceano Atlântico , Islândia , Oceanos e Mares , Temperatura
6.
Glob Chang Biol ; 27(7): 1457-1469, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33347684

RESUMO

We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a "no mitigation" scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocean.


Assuntos
Mudança Climática , Ecossistema , Animais , Oceano Atlântico , Humanos , Paris , Estações do Ano
7.
Environ Res ; 193: 110518, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33245882

RESUMO

Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 µg g-1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 µg g-1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g-1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g-1 ww) and p, p'-DDE (1.02 ± 1.49 ng g-1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g-1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.


Assuntos
Hidrocarbonetos Clorados , Mercúrio , Bifenilos Policlorados , Animais , Regiões Antárticas , Aves , Monitoramento Ambiental , Feminino , Hidrocarbonetos Clorados/análise , Mercúrio/análise , Bifenilos Policlorados/análise
8.
Proc Biol Sci ; 287(1940): 20202381, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33290675

RESUMO

Carry-over effects describe the phenomenon whereby an animal's previous conditions influence its subsequent performance. Carry-over effects are unlikely to affect individuals uniformly, but the factors modulating their strength are poorly known. Variation in the strength of carry-over effects may reflect individual differences in pace-of-life: slow-paced, shyly behaved individuals are thought to favour an allocation to self-maintenance over current reproduction, compared to their fast-paced, boldly behaved conspecifics (the pace-of-life syndrome hypothesis). Therefore, detectable carry-over effects on breeding should be weaker in bolder individuals, as they should maintain an allocation to reproduction irrespective of previous conditions, while shy individuals should experience stronger carry-over effects. We tested this prediction in black-legged kittiwakes breeding in Svalbard. Using miniature biologging devices, we measured non-breeding activity of kittiwakes and monitored their subsequent breeding performance. We report a number of negative carry-over effects of non-breeding activity on breeding, which were generally stronger in shyer individuals: more active winters were followed by later breeding phenology and poorer breeding performance in shy birds, but these effects were weaker or undetected in bolder individuals. Our study quantifies individual variability in the strength of carry-over effects on breeding and provides a mechanism explaining widespread differences in individual reproductive success.


Assuntos
Migração Animal , Comportamento Animal , Charadriiformes , Reprodução , Animais , Aves , Cruzamento , Feminino , Masculino , Personalidade , Estações do Ano , Svalbard
9.
J Anim Ecol ; 89(1): 68-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541578

RESUMO

Animal populations are often comprised of both foraging specialists and generalists. For instance, some individuals show higher foraging site fidelity (spatial specialization) than others. Such individual differences in degree of specialization can persist over time-scales of months or even years in long-lived animals, but the mechanisms leading to these different individual strategies are not fully understood. There is accumulating evidence that individual variation in foraging behaviour is shaped by animal personality traits, such as boldness. Despite this, the potential for boldness to drive differences in the degree of specialization is unknown. In this study, we used novel object tests to measure boldness in black-legged kittiwakes (Rissa tridactyla) breeding at four colonies in Svalbard and deployed GPS loggers to examine their at-sea foraging behaviour. We estimated the repeatability of foraging trips and used a hidden Markov model to identify locations of foraging sites in order to quantify individual foraging site fidelity. Across the breeding season, bolder birds were more repeatable than shy individuals in the distance and range of their foraging trips, and during the incubation period (but not chick rearing), bolder individuals were more site-faithful. Birds exhibited these differences while showing high spatial similarity in foraging areas, indicating that site selection was not driven by personality-dependent spatial partitioning. We instead suggest that a relationship between boldness and site fidelity may be driven by differences in behavioural flexibility between bold and shy individuals. Together, these results provide a potential mechanism by which widely reported individual differences in foraging specialization may emerge.


Assuntos
Charadriiformes , Comportamento Alimentar , Animais , Aves , Personalidade , Svalbard
10.
Environ Sci Technol ; 54(16): 10217-10226, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32696640

RESUMO

Environmental factors that can influence telomeres are diverse, but the association between telomeres and exposure to environmental contaminants is yet to be elucidated. To date, prior studies have focused on legacy persistent chlorinated pollutants (POPs), while the effects of poly- and perfluoroalkyl substances (PFAS) have been poorly documented. Here, we investigated the associations among PFAS congeners, absolute telomere length (cross-sectional approach), and telomere dynamics (rate of telomere length change over time, longitudinal approach) in one of the most contaminated arctic top predators, the glaucous gull Larus hyperboreus from Svalbard. We further estimated the effect of PFAS on apparent survival rates and re-sighting probabilities using a 10-year capture/recapture dataset (2010-2019). We found that birds exposed to higher concentrations of perfluorononadecanoate (PFNA) (median of 1565 pg/mL of ww in males and 1370 pg/mL of ww in females) and perfluorotetradecanoate (PFTeDA) (median of 370 pg/mL of ww in males and 210 pg/mL of ww in females) showed the slowest rate of telomere shortening. We also found that high blood concentrations of perfluorooctanoate (PFOA) (median of 120 pg/mL of ww in males and 150 pg/mL of ww in females) and perfluorohexanesulfonate (PFHxS) (median of 495 pg/mL of ww in males and 395 pg/mL of ww in females) were positively associated with higher re-sighting probabilities and apparent survival in males but not in females. Our work is the first to report an association between single PFAS compounds and telomeres, and the first to link PFAS exposure with survival probabilities, suggesting that the effect of PFAS exposure might be more tied to the type of compound rather than the total concentration of PFAS.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Animais , Regiões Árticas , Estudos Transversais , Demografia , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Feminino , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Masculino , Svalbard , Telômero/química
11.
Glob Chang Biol ; 25(12): 4081-4091, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31368188

RESUMO

The timing of annual events such as reproduction is a critical component of how free-living organisms respond to ongoing climate change. This may be especially true in the Arctic, which is disproportionally impacted by climate warming. Here, we show that Arctic seabirds responded to climate change by moving the start of their reproduction earlier, coincident with an advancing onset of spring and that their response is phylogenetically and spatially structured. The phylogenetic signal is likely driven by seabird foraging behavior. Surface-feeding species advanced their reproduction in the last 35 years while diving species showed remarkably stable breeding timing. The earlier reproduction for Arctic surface-feeding birds was significant in the Pacific only, where spring advancement was most pronounced. In both the Atlantic and Pacific, seabirds with a long breeding season showed a greater response to the advancement of spring than seabirds with a short breeding season. Our results emphasize that spatial variation, phylogeny, and life history are important considerations in seabird phenological response to climate change and highlight the key role played by the species' foraging behavior.


Assuntos
Migração Animal , Aves , Animais , Regiões Árticas , Mudança Climática , Filogenia , Reprodução , Estações do Ano
12.
Biol Lett ; 15(10): 20190634, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31640526

RESUMO

A global analysis recently showed that seabird breeding phenology (as the timing of egg-laying and hatching) does not, on average, respond to temperature changes or advance with time (Keogan et al. 2018 Nat. Clim. Change8, 313-318). This group, the most threatened of all birds, is therefore prone to spatio-temporal mismatches with their food resources. Yet, other aspects of the breeding phenology may also have a marked influence on breeding success, such as the arrival date of adults at the breeding site following winter migration. Here, we used a large tracking dataset of two congeneric seabirds breeding in 14 colonies across 18° latitudes, to show that arrival date at the colony was highly variable between colonies and species (ranging 80 days) and advanced 1.4 days/year while timing of egg-laying remained unchanged, resulting in an increasing pre-laying duration between 2009 and 2018. Thus, we demonstrate that potentially not all components of seabird breeding phenology are insensitive to changing environmental conditions.


Assuntos
Charadriiformes , Animais , Aves , Feminino , Oviposição , Parto , Gravidez , Estações do Ano
13.
J Exp Biol ; 221(Pt 13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29844199

RESUMO

Little auks (Alle alle) are one of the most numerous seabird species in the world and feed primarily on copepods in arctic waters. Their high daily energy requirements leave them vulnerable to current changes in the arctic plankton community, where a smaller, less-profitable copepod species (Calanus finmarchicus) becomes increasingly abundant. Little auks have been estimated to require ∼60,000 copepods per day, necessitating prey capture rates of ∼6 copepods per second underwater. To achieve such performance, it has been suggested that little auks capture their prey by (non-visual) filter feeding. We tested this hypothesis by exposing little auks to varying copepod densities within a shallow experimental pool and filming their prey capture behaviour. At none of the copepod densities tested did birds filter feed. Instead, all birds captured copepods by what we identified as visually guided suction feeding, achieved through an extension of their sub-lingual pouch. Suction feeding is very common in fish and marine mammals, but to the best of our knowledge, this is the first time that it has been specifically identified in a seabird species. While presumably less efficient than filter feeding, this behaviour may allow little auks to foster higher resilience when facing the consequences of arctic climate change.


Assuntos
Charadriiformes/fisiologia , Copépodes , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Animais , Mudança Climática , Densidade Demográfica , Sucção
14.
Glob Chang Biol ; 23(2): 490-502, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250039

RESUMO

The Arctic is warming more rapidly than other region on the planet, and the northern Barents Sea, including the Svalbard Archipelago, is experiencing the fastest temperature increases within the circumpolar Arctic, along with the highest rate of sea ice loss. These physical changes are affecting a broad array of resident Arctic organisms as well as some migrants that occupy the region seasonally. Herein, evidence of climate change impacts on terrestrial and marine wildlife in Svalbard is reviewed, with a focus on bird and mammal species. In the terrestrial ecosystem, increased winter air temperatures and concomitant increases in the frequency of 'rain-on-snow' events are one of the most important facets of climate change with respect to impacts on flora and fauna. Winter rain creates ice that blocks access to food for herbivores and synchronizes the population dynamics of the herbivore-predator guild. In the marine ecosystem, increases in sea temperature and reductions in sea ice are influencing the entire food web. These changes are affecting the foraging and breeding ecology of most marine birds and mammals and are associated with an increase in abundance of several temperate fish, seabird and marine mammal species. Our review indicates that even though a few species are benefiting from a warming climate, most Arctic endemic species in Svalbard are experiencing negative consequences induced by the warming environment. Our review emphasizes the tight relationships between the marine and terrestrial ecosystems in this High Arctic archipelago. Detecting changes in trophic relationships within and between these ecosystems requires long-term (multidecadal) demographic, population- and ecosystem-based monitoring, the results of which are necessary to set appropriate conservation priorities in relation to climate warming.


Assuntos
Aves , Mudança Climática , Ecossistema , Mamíferos , Animais , Regiões Árticas , Mar do Norte , Noruega , Dinâmica Populacional , Svalbard
15.
Glob Chang Biol ; 23(9): 3770-3780, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28387042

RESUMO

Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.


Assuntos
Mudança Climática , Cadeia Alimentar , Oceanos e Mares , Animais , Aves , Clima , Ecossistema , Dinâmica Populacional
16.
J Anim Ecol ; 86(3): 683-693, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28127765

RESUMO

Understanding how individuals and populations respond to fluctuations in climatic conditions is critical to explain and anticipate changes in ecological systems. Most such studies focus on climate impacts on single populations without considering inter- and intra-population heterogeneity. However, comparing geographically dispersed populations limits the risk of faulty generalizations and helps to improve ecological and demographic models. We aimed to determine whether differences in migration tactics among and within populations would induce inter- or intra-population heterogeneity in survival in relation to winter climate fluctuations. Our study species was the Common eider (Somateria mollissima), a marine duck with a circumpolar distribution, which is strongly affected by climatic conditions during several phases of its annual cycle. Capture-mark-recapture data were collected in two arctic (northern Canada and Svalbard) and one subarctic (northern Norway) population over a period of 18, 15, and 29 years respectively. These three populations have different migration tactics and experience different winter climatic conditions. Using multi-event and mixture modelling, we assessed the association between adult female eider survival and winter conditions as measured by the North Atlantic Oscillation (NAO) index. We found that winter weather conditions affected the survival of female eiders from each of these three populations. However, different mechanisms seemed to be involved. Survival of the two migrating arctic populations was impacted directly by changes in the NAO, whereas the subarctic resident population was affected by the NAO with time lags of 2-3 years. Moreover, we found evidence for intra-population heterogeneity in the survival response to the winter NAO in the Canadian eider population, where individuals migrate to distinct wintering areas. Our results illustrate how individuals and populations of the same species can vary in their responses to climate variation. We suspect that the found variation in the survival response of birds to winter conditions is partly explained by differences in migration tactic. Detecting and accounting for inter- and intra-population heterogeneity will improve our predictions concerning the response of wildlife to global changes.


Assuntos
Mudança Climática , Patos/fisiologia , Longevidade , Animais , Feminino , Noruega , Nunavut , Dinâmica Populacional , Estações do Ano , Svalbard
17.
Sci Total Environ ; 952: 175895, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218090

RESUMO

We assessed the concentrations of metals and other trace elements in two of the most common seabird species breeding on Svalbard, the black-legged kittiwake (Rissa tridactyla) and the Brünnich's guillemot (Uria lomvia). Both of these species feed mostly on fish and crustaceans but have different foraging strategies, kittiwakes being surface feeders while guillemots are divers. We investigated the concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), selenium (Se) and zinc (Zn) in the plasma and body feathers of black-legged kittiwakes (n = 17), as well as in the body feathers of Brünnich's guillemots (n = 13). Samples were collected from adult birds at two time points, one week apart during July 2017 in Kongsfjorden, Svalbard. Of the non-essential trace elements, As was found at the highest median concentration at both the first (56.23 ng/g ww) and second (39.99 ng/g ww) sampling timepoints in the kittiwake plasma. When separating for the sexes, as well as sampling time, males sampled at the first sampling time point had significantly higher concentrations of As (median at 0.087 ng/g versus 0.039 ng/g) and Se (median 0.26 ng/g versus 0.16 ng/g) compared to males sampled at the second time point. There was no significant difference in plasma concentrations between females at first and second sampling time points. Kittiwake feathers contained significantly higher concentrations of As, Cd and Hg than guillemot feathers, while guillemot feathers had significantly higher concentrations of Cu, Pb and Zn. However, of the non-essential elements in both kittiwake and guillemot feathers Hg was found with the highest median concentrations at 5160 and 1080 ng/g, respectively, thus in kittiwakes exceeding the level of 5000 ng/g associated with adverse effect (e.g., impaired reproduction). Levels of Hg and Se found in the kittiwake feathers were higher than previous studies on seabirds in the Arctic.


Assuntos
Charadriiformes , Monitoramento Ambiental , Plumas , Oligoelementos , Animais , Plumas/química , Oligoelementos/análise , Svalbard , Charadriiformes/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/sangue , Masculino , Feminino , Metais/análise , Metais/sangue , Selênio/análise , Selênio/sangue
18.
Environ Pollut ; 343: 123110, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086506

RESUMO

Mercury (Hg) is a metallic trace element toxic for humans and wildlife that can originate from natural and anthropic sources. Hg spatial gradients have been found in seabirds from the Arctic and other oceans, suggesting contrasting toxicity risks across regions. Selenium (Se) plays a protective role against Hg toxicity, but its spatial distribution has been much less investigated than that of Hg. From 2015 to 2017, we measured spatial co-exposure of Hg and Se in blood samples of two seabird species, the Brünnich's guillemot (Uria lomvia) and the black-legged kittiwake (Rissa tridactyla) from 17 colonies in the Arctic and subarctic regions, and we calculated their molar ratios (Se:Hg), as a measure of Hg sequestration by Se and, therefore, of Hg exposure risk. We also evaluated concentration differences between species and ocean basins (Pacific-Arctic and Atlantic-Arctic), and examined the influence of trophic ecology on Hg and Se concentrations using nitrogen and carbon stable isotopes. In the Atlantic-Arctic ocean, we found a negative west-to-east gradient of Hg and Se for guillemots, and a positive west-to-east gradient of Se for kittiwakes, suggesting that these species are better protected from Hg toxicity in the European Arctic. Differences in Se gradients between species suggest that they do not follow environmental Se spatial variations. This, together with the absence of a general pattern for isotopes influence on trace element concentrations, could be due to foraging ecology differences between species. In both oceans, the two species showed similar Hg concentrations, but guillemots showed lower Se concentrations and Se:Hg than kittiwakes, suggesting a higher Hg toxicity risk in guillemots. Within species, neither Hg, nor Se or Se:Hg differed between both oceans. Our study highlights the importance of considering Se together with Hg, along with different species and regions, when evaluating Hg toxic effects on marine predators in international monitoring programs.


Assuntos
Charadriiformes , Mercúrio , Selênio , Oligoelementos , Animais , Humanos , Mercúrio/análise , Isótopos de Carbono , Regiões Árticas , Monitoramento Ambiental
19.
Oecologia ; 173(4): 1271-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23771803

RESUMO

Analysis of synchrony in population fluctuations is a central topic in ecology. It can help identify factors that regulate populations, and also the scales at which these factors exert their influence. Using long-term data from seven Brünnich's guillemot colonies in Svalbard, Norway, we determined that year to year population fluctuations were synchronized in six of the seven colonies. The seventh colony was located farther away and in a different oceanographic system. Moreover, all seven colonies have declined significantly since the late 1990s following a very similar pattern. If the rate of population decline does not change, Brünnich's guillemots in Svalbard have a high probability of becoming quasi-extinct within the next 50 years. The high synchrony between the different colonies could further increase this risk of extinction. Our results indicate that environmental forcing plays a role in the colony size fluctuation of Brünnich's guillemot (i.e., a Moran effect). These fluctuations are well explained by changes in the subpolar gyre in the region where Brünnich's guillemots overwinter. This subpolar gyre weakened in the mid-1990s, leading to a warming of the North Atlantic. Our study indicates that this basin-scale shift in the subpolar gyre is closely related to the decline in Brünnich's guillemot in Svalbard. Our results suggest that the causal mechanism linking changes in oceanographic conditions in the North Atlantic and Brünnich's guillemot population dynamics are likely mediated, at least partly, by changes in recruitment.


Assuntos
Charadriiformes/fisiologia , Clima , Animais , Regiões Árticas , Masculino , Densidade Demográfica , Dinâmica Populacional , Svalbard
20.
Trends Ecol Evol ; 38(8): 773-783, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37202284

RESUMO

Global warming affects the Arctic more than any other region. Mass media constantly relay apocalyptic visions of climate change threatening Arctic wildlife, especially emblematic megafauna such as polar bears, whales, and seabirds. Yet, we are just beginning to understand such ecological impacts on marine megafauna at the scale of the Arctic. This knowledge is geographically and taxonomically biased, with striking deficiencies in the Russian Arctic and strong focus on exploited species such as cod. Beyond a synthesis of scientific advances in the past 5 years, we provide ten key questions to be addressed by future work and outline the requested methodology. This framework builds upon long-term Arctic monitoring inclusive of local communities whilst capitalising on high-tech and big data approaches.


Assuntos
Animais Selvagens , Mudança Climática , Animais , Regiões Árticas , Aquecimento Global , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA