Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 45(18): 10595-10613, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977635

RESUMO

The integrity of genome is a prerequisite for healthy life. Indeed, defects in DNA repair have been associated with several human diseases, including tissue-fibrosis, neurodegeneration and cancer. Despite decades of extensive research, the spatio-mechanical processes of double-strand break (DSB)-repair, especially the auxiliary factor(s) that can stimulate accurate and timely repair, have remained elusive. Here, we report an ATM-kinase dependent, unforeseen function of the nuclear isoform of the Receptor for Advanced Glycation End-products (nRAGE) in DSB-repair. RAGE is phosphorylated at Serine376 and Serine389 by the ATM kinase and is recruited to the site of DNA-DSBs via an early DNA damage response. nRAGE preferentially co-localized with the MRE11 nuclease subunit of the MRN complex and orchestrates its nucleolytic activity to the ATR kinase signaling. This promotes efficient RPA2S4-S8 and CHK1S345 phosphorylation and thereby prevents cellular senescence, IPF and carcinoma formation. Accordingly, loss of RAGE causatively linked to perpetual DSBs signaling, cellular senescence and fibrosis. Importantly, in a mouse model of idiopathic pulmonary fibrosis (RAGE-/-), reconstitution of RAGE efficiently restored DSB-repair and reversed pathological anomalies. Collectively, this study identifies nRAGE as a master regulator of DSB-repair, the absence of which orchestrates persistent DSB signaling to senescence, tissue-fibrosis and oncogenesis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Senescência Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Homeostase , Pulmão/fisiopatologia , Proteína Homóloga a MRE11 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/genética , Fibrose Pulmonar/fisiopatologia , Receptor para Produtos Finais de Glicação Avançada/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
2.
Immunol Lett ; 240: 77-97, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34655659

RESUMO

Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.


Assuntos
Diabetes Mellitus/imunologia , Sistema Nervoso Entérico/imunologia , Homeostase/imunologia , Neuroimunomodulação , Transdução de Sinais/imunologia , Animais , Humanos
3.
Front Immunol ; 12: 679055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322118

RESUMO

The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.


Assuntos
Imunomodulação , Neuroimunomodulação , Neurônios/metabolismo , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/imunologia , Sistema Nervoso Periférico/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Neurônios/citologia , Transdução de Sinais
4.
Nat Commun ; 12(1): 426, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462216

RESUMO

Painful neuropathy is a frequent complication in diabetes. Proopiomelanocortin (POMC) is an endogenous opioid precursor peptide, which plays a protective role against pain. Here, we report dysfunctional POMC-mediated antinociception in sensory neurons in diabetes. In streptozotocin-induced diabetic mice the Pomc promoter is repressed due to increased binding of NF-kB p50 subunit, leading to a loss in basal POMC level in peripheral nerves. Decreased POMC levels are also observed in peripheral nervous system tissue from diabetic patients. The antinociceptive pathway mediated by POMC is further impaired due to lysosomal degradation of µ-opioid receptor (MOR). Importantly, the neuropathic phenotype of the diabetic mice is rescued upon viral overexpression of POMC and MOR in the sensory ganglia. This study identifies an antinociceptive mechanism in the sensory ganglia that paves a way for a potential therapy for diabetic neuropathic pain.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/patologia , Nociceptividade/fisiologia , Pró-Opiomelanocortina/deficiência , Células Receptoras Sensoriais/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Neuropatias Diabéticas/etiologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/patologia , Humanos , Lisossomos , Masculino , Camundongos , Camundongos Knockout , Pró-Opiomelanocortina/genética , Proteólise , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Estreptozocina/toxicidade
6.
Cell Signal ; 25(1): 66-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23316499

RESUMO

Actin cytoskeleton reorganization initiated by testosterone conjugates through activation of membrane androgen receptors (mAR) has recently been reported in colon tumor cells. This mAR-induced actin reorganization was recognized as a critical initial event, controlling apoptosis and inhibiting cell migration. The present study addressed the molecular signaling regulating the rapid actin remodeling initiated upon testosterone-induced mAR activation in Caco2 colon tumor cells. We report early phosphorylation of the Focal Adhesion Kinase (FAK), followed by substantial early phosphorylation of mammalian target of rapamycin (mTOR), S6 kinase (p70S6K) and the actin regulating p21-activated kinase (PAK1). Pharmacological inhibition of FAK-sensitive phosphatidylinositide-3-kinase (PI-3K), a known element of mAR-signaling, fully abrogated the testosterone-induced actin reorganization and the activation of mTOR, p70S6K and PAK1. Similarly, inhibition of mTOR blocked p70S6K and PAK1 phosphorylation and actin remodeling. Pretreatment of the cells with the intracellular androgen receptor (iAR) antagonist flutamide or silencing iAR through siRNA did not influence mTOR phosphorylation and actin reorganization, indicating specific mAR-induced testosterone effects that are independent of iAR signaling. In conclusion, we demonstrate for the first time a new mAR-governed pathway involving FAK/PI-3K and mTOR/p70S6K/PAK1-cascade that regulates early actin reorganization in colon cancer cells.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Actinas/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Testosterona/farmacologia , Antagonistas de Receptores de Andrógenos/farmacologia , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Flutamida/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Albumina Sérica/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Testosterona/química , Quinases Ativadas por p21/metabolismo , Quinases Associadas a rho/metabolismo
7.
FEMS Immunol Med Microbiol ; 62(2): 140-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21332827

RESUMO

Dengue virus (DENV) infection of human endothelial cells has been implicated in the pathobiology of dengue hemorrhagic fever and dengue shock syndrome. However, the mechanisms by which DENV infections alter the functional physiology of endothelial cells remain incompletely understood. In the present study, we examined the susceptibility of a human liver sinusoidal endothelial cell line SK Hep1 to all four serotypes of DENV and studied the effect of the virus on in vitro angiogenesis. All four serotypes of DENV could infect the SK Hep1 cells, but showed variable cytopathic effects, the most pronounced being that of DENV-2. Electron microscopy of the infected cells showed significant ultrastructural changes. In vitro angiogenesis assays on DENV-2 exposed SK Hep1 cells in the matrigel system showed inhibition compared with the controls. Importantly, transfection and transient expression of the DENV-2 envelope glycoprotein (E) in these cells showed drastic alterations in cell shapes and the E protein could be localized by fluorescence microscopy in terminal knob-like structures. Therefore, SK Hep1, a human hepatic sinusoid-derived endothelial cell line, may constitute a potential model to study DENV-endothelial cell interactions in vitro, especially towards understanding the possible virus-induced changes in hepatic endothelium and its role in disease pathogenesis.


Assuntos
Vírus da Dengue/patogenicidade , Células Endoteliais/fisiologia , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Neovascularização Fisiológica , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Efeito Citopatogênico Viral , Células Endoteliais/citologia , Humanos , Microscopia Eletrônica de Transmissão , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA