Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Microbiol ; 57(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30842226

RESUMO

Francisella tularensis, Bacillus anthracis, and Yersinia pestis are tier 1 select agents with the potential to rapidly cause severe disease. Rapid detection of these bacteria from patient samples at the point of care could contribute to improved clinical outcomes in the event of a bioterrorism attack. A multiplex nested PCR assay for detection of F. tularensis, B. anthracis, and Y. pestis directly from patient blood samples was developed using the GeneXpert system. The multiplex GeneXpert cartridge-based assay includes all necessary sample processing and amplification reagents. Blood samples spiked with different numbers of CFU were used to measure the analytical limit of detection (LOD) and dynamic range. Sensitivity was determined by testing spiked blood samples and negative-control blood in a blind manner. Specificity was determined by testing against nontarget pathogens and blood samples from clinical patients. The assay LOD was 8.5 CFU/ml for F. tularensis, 10 CFU/ml for B. anthracis, and 4.5 CFU/ml for Y. pestis The sensitivity was 100% at the LOD for all three select agent bacteria in spiked patient blood samples. The assay specificity was 100% when it was tested against both nontarget pathogens and clinical patient blood samples. The total assay time was approximately 100 min. This automated assay, which is suitable for use at the point of care, identifies three select agents directly in blood without the need for enrichment with a high sensitivity within 100 min. This assay may enable rapid detection and treatment of patients infected with the target organisms in the event of a bioterrorism attack.


Assuntos
Bacillus anthracis/isolamento & purificação , Sangue/microbiologia , Francisella tularensis/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex , Yersinia pestis/isolamento & purificação , Antraz/sangue , Antraz/diagnóstico , Ensaios de Triagem em Larga Escala , Humanos , Limite de Detecção , Peste/sangue , Peste/diagnóstico , Sensibilidade e Especificidade , Tularemia/sangue , Tularemia/diagnóstico
2.
J Clin Microbiol ; 55(1): 291-301, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27847371

RESUMO

Francisella tularensis is a potential bioterrorism agent that is highly infectious at very low doses. Diagnosis of tularemia by blood culture and nucleic acid-based diagnostic tests is insufficiently sensitive. Here, we demonstrate a highly sensitive F. tularensis assay that incorporates sample processing and detection into a single cartridge suitable for point-of-care detection. The assay limit of detection (LOD) and dynamic range were determined in a filter-based cartridge run on the GeneXpert system. F. tularensis DNA in buffer or CFU of F. tularensis was spiked into human or macaque blood. To simulate detection in human disease, the assay was tested on blood drawn from macaques infected with F. tularensis Schu S4 at daily intervals. Assay detection was compared to that with a conventional quantitative PCR (qPCR) assay and blood culture. The assay LOD was 0.1 genome equivalents (GE) per reaction and 10 CFU/ml F. tularensis in both human and macaque blood. In infected macaques, the assay detected F. tularensis on days 1 to 4 postinfection in 21%, 17%, 60%, and 83% of macaques, respectively, compared to conventional qPCR positivity rates of 0%, 0%, 30%, and 100% and CFU detection of blood culture at 0%, 0%, 0%, and 10% positive, respectively. Assay specificity was 100%. The new cartridge-based assay can rapidly detect F. tularensis in bloodstream infections directly in whole blood at the early stages of infection with a sensitivity that is superior to that of other methods. The simplicity of the automated testing procedures may make this test suitable for rapid point-of-care detection.


Assuntos
Automação Laboratorial/métodos , Técnicas Bacteriológicas/métodos , Sangue/microbiologia , Francisella tularensis/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Tularemia/diagnóstico , Animais , Francisella tularensis/genética , Humanos , Macaca , Sensibilidade e Especificidade
3.
J Clin Microbiol ; 55(10): 2964-2971, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28747367

RESUMO

Bacillus anthracis is a tier 1 select agent with the potential to quickly cause severe disease. Rapid identification of this pathogen may accelerate treatment and reduce mortality in the event of a bioterrorism attack. We developed a rapid and sensitive assay to detect B. anthracis bacteremia using a system that is suitable for point-of-care testing. A filter-based cartridge that included both sample processing and PCR amplification functions was loaded with all reagents needed for sample processing and multiplex nested PCR. The assay limit of detection (LOD) and dynamic range were determined by spiking B. anthracis DNA into individual PCR mixtures and B. anthracis CFU into human blood. One-milliliter blood samples were added to the filter-based detection cartridge and tested for B. anthracis on a GeneXpert instrument. Assay specificity was determined by testing blood spiked with non-anthrax bacterial isolates or by testing blood samples drawn from patients with concurrent non-B. anthracis bacteremia or nonbacteremic controls. The assay LODs were 5 genome equivalents per reaction and 10 CFU/ml blood for both the B. anthracis Sterne and V1B strains. There was a 6-log10 dynamic range. Assay specificity was 100% for tests of non-B. anthracis bacterial isolates and patient blood samples. Assay time was less than 90 min. This automated system suitable for point-of-care detection rapidly identifies B. anthracis directly from blood with high sensitivity. This assay might lead to early detection and more rapid therapy in the event of a bioterrorism attack.


Assuntos
Antraz/diagnóstico , Bacillus anthracis/genética , Bacteriemia/diagnóstico , DNA Bacteriano/sangue , Testes Imediatos , Bacillus anthracis/isolamento & purificação , Bacteriemia/microbiologia , DNA Bacteriano/genética , Sistemas Inteligentes , Genoma Bacteriano/genética , Humanos , Limite de Detecção
4.
mBio ; 8(4)2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851844

RESUMO

The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection.IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and specificity with pulmonary samples, its sensitivity has been lower with smear-negative pulmonary samples and extrapulmonary samples. In addition, the prediction of rifampin resistance (RIF-R) in paucibacillary samples and for a few rpoB mutations has resulted in both false-positive and false-negative results. The present study is the first demonstration of the design features and operational characteristics of an improved Xpert Ultra assay. This study also shows that the Ultra format overcomes many of the known shortcomings of Xpert. The new assay should significantly improve TB detection, especially in patients with paucibacillary disease, and provide more-reliable detection of RIF-R.


Assuntos
Antibióticos Antituberculose/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Testes Imediatos , Rifampina/farmacologia , Tuberculose/diagnóstico , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Humanos , Limite de Detecção , Técnicas de Diagnóstico Molecular/métodos , Mutação , Mycobacterium tuberculosis/genética , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia
5.
PLoS One ; 11(3): e0151980, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27007974

RESUMO

BACKGROUND: Tuberculosis (TB) is difficult to diagnose in children using molecular tests, because children have difficulty providing respiratory samples. Stool could replace sputum for diagnostic TB testing if adequate sample processing techniques were available. METHODS: We developed a rapid method to process large volumes of stool for downstream testing by the Xpert MTB/RIF (Xpert) TB-detection assay. The method was tested and optimized on stool samples spiked with known numbers of M. tuberculosis colony forming units (CFU), and stools from M. tuberculosis-infected cynomolgus macaques (Macaca fascicularis). Performance was scored on number of positive Xpert tests, the cycle thresholds (Cts) of the Xpert sample-processing control (SPC), and the Cts of the M. tuberculosis-specific rpoB probes. The method was then validated on 20 confirmed TB cases and 20 controls in Durban, South Africa. RESULTS: The assay's analytical limit of detection was 1,000 CFU/g of stool. As much as one gram of spiked stool could be tested without showing increased PCR inhibition. In analytical spiking experiments using human stool, 1g samples provided the best sensitivity compared to smaller amounts of sample. However, in Macaques with TB, 0.6g stool samples performed better than either 0.2g or 1.2g samples. Testing the stool of pediatric TB suspects and controls suggested an assay sensitivity of 85% (95% CI 0.6-0.9) and 84% (95% CI 0.6-0.96) for 0.6g and 1.2g stool samples, respectively, and a specificity of 100% (95% CI 0.77-1) and 94% (95% CI 0.7-0.99), respectively. CONCLUSION: This novel approach may permit simple and rapid detection of TB using pediatric stool samples.


Assuntos
Fezes/microbiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/diagnóstico , Animais , Criança , Humanos , Macaca fascicularis , Macaca mulatta , Sensibilidade e Especificidade , Manejo de Espécimes
6.
PLoS One ; 8(7): e68709, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894333

RESUMO

AIMS: Hypoglycemia is a severe side effect of intensive insulin therapy. Recurrent hypoglycemia (RH) impairs the counter-regulatory response (CRR) which restores euglycemia. During hypoglycemia, ventromedial hypothalamus (VMH) production of nitric oxide (NO) and activation of its receptor soluble guanylyl cyclase (sGC) are critical for the CRR. Hypoglycemia also increases brain reactive oxygen species (ROS) production. NO production in the presence of ROS causes protein S-nitrosylation. S-nitrosylation of sGC impairs its function and induces desensitization to NO. We hypothesized that during hypoglycemia, the interaction between NO and ROS increases VMH sGC S-nitrosylation levels and impairs the CRR to subsequent episodes of hypoglycemia. VMH ROS production and S-nitrosylation were quantified following three consecutive daily episodes of insulin-hypoglycemia (RH model). The CRR was evaluated in rats in response to acute insulin-induced hypoglycemia or via hypoglycemic-hyperinsulinemic clamps. Pretreatment with the anti-oxidant N-acetyl-cysteine (NAC) was used to prevent increased VMH S-nitrosylation. RESULTS: Acute insulin-hypoglycemia increased VMH ROS levels by 49±6.3%. RH increased VMH sGC S-nitrosylation. Increasing VMH S-nitrosylation with intracerebroventricular injection of the nitrosylating agent S-nitroso-L-cysteine (CSNO) was associated with decreased glucagon secretion during hypoglycemic clamp. Finally, in RH rats pre-treated with NAC (0.5% in drinking water for 9 days) hypoglycemia-induced VMH ROS production was prevented and glucagon and epinephrine production was not blunted in response to subsequent insulin-hypoglycemia. CONCLUSION: These data suggest that NAC may be clinically useful in preventing impaired CRR in patients undergoing intensive-insulin therapy.


Assuntos
Hipoglicemia/metabolismo , Hipoglicemia/fisiopatologia , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Acetilcisteína/administração & dosagem , Animais , Glucose/metabolismo , Hipoglicemia/induzido quimicamente , Hipotálamo/efeitos dos fármacos , Insulina/efeitos adversos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA