Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172953

RESUMO

The selective double hydroboration of CO2 into bis(boryl)acetal (BBA) is a challenging yet appealing reduction process since BBA can be used as a versatile C1 and Cn sources for the synthesis of value-added products. In the present study, we demonstrate that simple borohydride compounds are efficient and selective catalysts for the synthesis of BBA when using 9-borabicyclo(3.3.1)nonane (9-BBN) as a reductant. The experimental and theoretical investigations show that while the borohydride species catalyzes the first reduction step of CO2 into formoxyborane (2e- reduction intermediate), the observed 4e- reduction selectivity is mostly due to the ability of 9-BBN to reduce the formoxyborane into BBA without a catalyst. Notably, 0.2 mol % of LiH2BBN catalyzed the hydroboration of CO2 with 9-BBN as a reductant into the corresponding BBA in 77% yield with TON and TOF of 385 and 196 h-1, respectively. The simplicity of borohydride contrasts with the more elaborate catalytic systems used so far for the 4e- reduction of CO2.

2.
Angew Chem Int Ed Engl ; 63(31): e202406008, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38713131

RESUMO

Biocatalytic hydroamination of alkenes is an efficient and selective method to synthesize natural and unnatural amino acids. Phenylalanine ammonia-lyases (PALs) have been previously engineered to access a range of substituted phenylalanines and heteroarylalanines, but their substrate scope remains limited, typically including only arylacrylic acids. Moreover, the enantioselectivity in the hydroamination of electron-deficient substrates is often poor. Here, we report the structure-based engineering of PAL from Planctomyces brasiliensis (PbPAL), enabling preparative-scale enantioselective hydroaminations of previously inaccessible yet synthetically useful substrates, such as amide- and ester-containing fumaric acid derivatives. Through the elucidation of cryo-electron microscopy (cryo-EM) PbPAL structure and screening of the structure-based mutagenesis library, we identified the key active site residue L205 as pivotal for dramatically enhancing the enantioselectivity of hydroamination reactions involving electron-deficient substrates. Our engineered PALs demonstrated exclusive α-regioselectivity, high enantioselectivity, and broad substrate scope. The potential utility of the developed biocatalysts was further demonstrated by a preparative-scale hydroamination yielding tert-butyl protected l-aspartic acid, widely used as intermediate in peptide solid-phase synthesis.


Assuntos
Ácido Aspártico , Fenilalanina Amônia-Liase , Engenharia de Proteínas , Estereoisomerismo , Ácido Aspártico/química , Ácido Aspártico/análogos & derivados , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/genética , Biocatálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA