Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(21): e2219540120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186837

RESUMO

Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE-MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE-MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE-MurF interacts with other Mur ligases via its central domains with KDs in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Ligases/metabolismo , Parede Celular/metabolismo , Genômica , Peptidoglicano/metabolismo , Peptídeo Sintases/metabolismo
2.
J Am Chem Soc ; 146(13): 9252-9260, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38500259

RESUMO

The rapid spread of antimicrobial resistance across bacterial pathogens poses a serious risk to the efficacy and sustainability of available treatments. This puts pressure on research concerning the development of new drugs. Here, we present an in-cell NMR-based research strategy to monitor the activity of the enzymes located in the periplasmic space delineated by the inner and outer membranes of Gram-negative bacteria. We demonstrate its unprecedented analytical power in monitoring in situ and in real time (i) the hydrolysis of ß-lactams by ß-lactamases, (ii) the interaction of drugs belonging to the ß-lactam family with their essential targets, and (iii) the binding of inhibitors to these enzymes. We show that in-cell NMR provides a powerful analytical tool for investigating new drugs targeting the molecular components of the bacterial periplasm.


Assuntos
Antibacterianos , Periplasma , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Periplasma/metabolismo , Bactérias , beta-Lactamas , beta-Lactamases/metabolismo , Espectroscopia de Ressonância Magnética
3.
PLoS Pathog ; 15(5): e1007731, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31083688

RESUMO

The type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin. Localization and assembly of secretins in the outer membrane requires recognition of secretin monomers by two different partner systems: an inner membrane accessory complex or a highly sequence-diverse outer membrane lipoprotein, termed the pilotin. In this study, we addressed the question of differential secretin assembly mechanisms by using cryo-electron microscopy to determine the structures of the secretins from A. hydrophila (pilotin-independent ExeD) and V. vulnificus (pilotin-dependent EpsD). These structures, at approximately 3.5 Å resolution, reveal pentadecameric stoichiometries and C-terminal regions that carry a signature motif in the case of a pilotin-dependent assembly mechanism. We solved the crystal structure of the V. vulnificus EpsS pilotin and confirmed the importance of the signature motif for pilotin-dependent secretin assembly by performing modelling with the C-terminus of EpsD. We also show that secretin assembly is essential for membrane integrity and toxin secretion in V. vulnificus and establish that EpsD requires the coordinated activity of both the accessory complex EpsAB and the pilotin EpsS for full assembly and T2SS function. In contrast, mutation of the region of the S-domain that is normally the site of pilotin interactions has little effect on assembly or function of the ExeD secretin. Since secretins are essential outer membrane channels present in a variety of secretion systems, these results provide a structural and functional basis for understanding the key assembly steps for different members of this vast pore-forming family of proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Secretina/química , Sistemas de Secreção Tipo II/química , Vibrio vulnificus/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Lipoproteínas/química , Modelos Moleculares , Conformação Proteica , Secretina/metabolismo , Homologia de Sequência , Sistemas de Secreção Tipo II/metabolismo , Vibrio vulnificus/crescimento & desenvolvimento
4.
Bioorg Chem ; 100: 103921, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32464403

RESUMO

Enterococci are gram-positive, widespread nosocomial pathogens that in recent years have developed resistance to various commonly employed antibiotics. Since finding new infection-control agents based on secondary metabolites from organisms has proved successful for decades, natural products are potentially useful sources of compounds with activity against enterococci. Herein are reported the results of a natural product library screening based on a whole-cell assay against a gram-positive model organism, which led to the isolation of a series of anacardic acids identified by analysis of their spectroscopic data and by chemical derivatizations. Merulinic acid C was identified as the most active anacardic acid derivative obtained against antibiotic-resistant enterococci. Fluorescence microscopy analyses showed that merulinic acid C targets the bacterial membrane without affecting the peptidoglycan and causes rapid cellular ATP leakage from cells. Merulinic acid C was shown to be synergistic with gentamicin against Enterococcus faecium, indicating that this compound could inspire the development of new antibiotic combinations effective against drug-resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Gentamicinas/farmacologia , Sinergismo Farmacológico , Enterococcus faecium/crescimento & desenvolvimento , Enterococcus faecium/metabolismo , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Hidroxibenzoatos/farmacologia
5.
Subcell Biochem ; 93: 273-289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31939154

RESUMO

The bacterial cell wall is the validated target of mainstream antimicrobials such as penicillin and vancomycin. Penicillin and other ß-lactams act by targeting Penicillin-Binding Proteins (PBPs), enzymes that play key roles in the biosynthesis of the main component of the cell wall, the peptidoglycan. Despite the spread of resistance towards these drugs, the bacterial cell wall continues to be a major Achilles' heel for microbial survival, and the exploration of the cell wall formation machinery is a vast field of work that can lead to the development of novel exciting therapies. The sheer complexity of the cell wall formation process, however, has created a significant challenge for the study of the macromolecular interactions that regulate peptidoglycan biosynthesis. New developments in genetic and biochemical screens, as well as different aspects of structural biology, have shed new light on the importance of complexes formed by PBPs, notably within the cell wall elongation machinery. This chapter summarizes structural and functional details of PBP complexes involved in the periplasmic and membrane steps of peptidoglycan biosynthesis with a focus on cell wall elongation. These assemblies could represent interesting new targets for the eventual development of original antibacterials.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Parede Celular/química , Peptidoglicano/biossíntese
6.
Biochemistry ; 58(30): 3314-3324, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31264408

RESUMO

Peptidoglycan is one of the major components of the bacterial cell wall, being responsible for shape and stability. Due to its essential nature, its biosynthetic pathway is the target for major antibiotics, and proteins involved in its biosynthesis continue to be targeted for inhibitor studies. The biosynthesis of its major building block, Lipid II, is initiated in the bacterial cytoplasm with the sequential reactions catalyzed by Mur enzymes, which have been suggested to form a multiprotein complex to facilitate shuttling of the building blocks toward the inner membrane. In this work, we purified MurC, MurD, MurE, MurF, and MurG from the human pathogen Streptococcus pneumoniae and characterized their interactions using chemical cross-linking, mass spectrometry, analytical ultracentrifugation, and microscale thermophoresis. Mur ligases interact strongly as binary complexes, with interaction regions mapping mostly to loop regions. Interestingly, MurC, MurD, and MurE display 10-fold higher affinity for each other than for MurF and MurG, suggesting that Mur ligases that catalyze the initial reactions in the peptidoglycan biosynthesis pathway could form a subcomplex that could be important to facilitate Lipid II biosynthesis. The interface between Mur proteins could represent a yet unexplored target for new inhibitor studies that could lead to the development of novel antimicrobials.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Streptococcus pneumoniae/genética
7.
Proc Natl Acad Sci U S A ; 112(17): E2130-8, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25848052

RESUMO

Cytoskeletal structures are dynamically remodeled with the aid of regulatory proteins. FtsZ (filamentation temperature-sensitive Z) is the bacterial homolog of tubulin that polymerizes into rings localized to cell-division sites, and the constriction of these rings drives cytokinesis. Here we investigate the mechanism by which the Bacillus subtilis cell-division inhibitor, MciZ (mother cell inhibitor of FtsZ), blocks assembly of FtsZ. The X-ray crystal structure reveals that MciZ binds to the C-terminal polymerization interface of FtsZ, the equivalent of the minus end of tubulin. Using in vivo and in vitro assays and microscopy, we show that MciZ, at substoichiometric levels to FtsZ, causes shortening of protofilaments and blocks the assembly of higher-order FtsZ structures. The findings demonstrate an unanticipated capping-based regulatory mechanism for FtsZ.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Proteínas do Citoesqueleto/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
8.
J Biol Chem ; 290(37): 22581-92, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26198632

RESUMO

Pili are fibrous appendages expressed on the surface of a vast number of bacterial species, and their role in surface adhesion is important for processes such as infection, colonization, andbiofilm formation. The human pathogen Streptococcus pneumoniae expresses two different types of pili, PI-1 and PI-2, both of which require the concerted action of structural proteins and sortases for their polymerization. The type PI-1 streptococcal pilus is a complex, well studied structure, but the PI-2 type, present in a number of invasive pneumococcal serotypes, has to date remained less well understood. The PI-2 pilus consists of repeated units of a single protein, PitB, whose covalent association is catalyzed by cognate sortase SrtG-1 and partner protein SipA. Here we report the high resolution crystal structures of PitB and SrtG1 and use molecular modeling to visualize a "trapped" 1:1 complex between the two molecules. X-ray crystallography and electron microscopy reveal that the pneumococcal PI-2 backbone fiber is formed by PitB monomers associated in head-to-tail fashion and that short, flexible fibers can be formed even in the absence of coadjuvant proteins. These observations, obtained with a simple pilus biosynthetic system, are likely to be applicable to other fiber formation processes in a variety of Gram-positive organisms.


Assuntos
Proteínas de Bactérias/química , Fímbrias Bacterianas/química , Streptococcus pneumoniae/química , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
9.
J Biol Chem ; 289(24): 16988-97, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24755220

RESUMO

Pili are surface-attached, fibrous virulence factors that play key roles in the pathogenesis process of a number of bacterial agents. Streptococcus pneumoniae is a causative agent of pneumonia and meningitis, and the appearance of drug-resistance organisms has made its treatment challenging, especially in developing countries. Pneumococcus-expressed pili are composed of three structural proteins: RrgB, which forms the polymerized backbone, RrgA, the tip-associated adhesin, and RrgC, which presumably associates the pilus with the bacterial cell wall. Despite the fact that the structures of both RrgA and RrgB were known previously, structural information for RrgC was still lacking, impeding the analysis of a complete model of pilus architecture. Here, we report the structure of RrgC to 1.85 Å and reveal that it is a three-domain molecule stabilized by two intradomain isopeptide bonds. RrgC does not depend on pilus-specific sortases to become attached to the cell wall; instead, it binds the preformed pilus to the peptidoglycan by employing the catalytic activity of SrtA. A comprehensive model of the type 1 pilus from S. pneumoniae is also presented.


Assuntos
Proteínas de Fímbrias/química , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/química , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Streptococcus pneumoniae/metabolismo
10.
J Biol Chem ; 289(6): 3591-601, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24297169

RESUMO

The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and ß-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51-59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Sistemas de Secreção Bacterianos/fisiologia , Chaperonas Moleculares , Pseudomonas aeruginosa , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cristalografia por Raios X , Camundongos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
11.
J Biol Chem ; 288(46): 33439-48, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24064214

RESUMO

Formation of the peptidoglycan stem pentapeptide requires the insertion of both L and D amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Šresolution in the presence of ADP and the reaction product, UDP-MurNAc-L-Ala-γ-D-Glu-L-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between L-lysine and D,L-diaminopimelic acid, the predominant amino acid that replaces L-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of L-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for L-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic L-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.


Assuntos
Proteínas de Bactérias/química , Parede Celular/enzimologia , Lisina/química , Peptídeo Sintases/química , Peptidoglicano/química , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Cristalografia por Raios X , Lisina/genética , Lisina/metabolismo , Metabolômica , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/genética , Estrutura Terciária de Proteína , Staphylococcus aureus/genética
12.
PLoS Pathog ; 8(4): e1002637, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496657

RESUMO

The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Toxinas Bacterianas , Dobramento de Proteína , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade , Ubiquitinação
13.
Acta Pharm ; 74(3): 423-440, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39279527

RESUMO

In the final phases of bacterial cell wall synthesis, penicillin-binding proteins (PBPs) catalyze the cross-linking of peptidoglycan. For many decades, effective and non-toxic ß-lactam antibiotics have been successfully used as mimetics of the d-Ala-d-Ala moiety of the natural substrate and employed as irreversible inhibitors of PBPs. In the years following their discovery, the emergence of resistant bacteria led to a decline in their clinical efficacy. Using Staudinger cycloaddition, we synthesized a focused library of novel monocyclic ß-lactams in which different substituents were introduced at the C4 position of the ß-lactam ring, at the C3 amino position, and at the N1 lactam nitrogen. In biochemical assays, the compounds were evaluated for their inhibitory effect on the model enzyme PBP1b from Streptococcus pneumoniae. Upon investigation of the antibacterial activity of the newly prepared compounds against ESKAPE pathogens, some compounds showed moderate inhibition. We also examined their reactivity and selectivity in a biochemical assay with other enzymes that have a catalytic serine in the active site, such as human cholinesterases, where they also showed no inhibitory activity, highlighting their specificity for bacterial targets. These compounds form the basis for further work on new monocyclic ß-lactams with improved antibacterial activity.


Assuntos
Antibacterianos , Proteínas de Ligação às Penicilinas , Streptococcus pneumoniae , beta-Lactamas , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , beta-Lactamas/farmacologia , beta-Lactamas/síntese química , beta-Lactamas/química , Relação Estrutura-Atividade , Humanos , Testes de Sensibilidade Microbiana
14.
Environ Microbiol ; 15(12): 3218-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23826965

RESUMO

Peptidoglycan is a major determinant of cell shape in bacteria, and its biosynthesis involves the concerted action of cytoplasmic, membrane-associated and periplasmic enzymes. Within the cytoplasm, Mur enzymes catalyse the first steps leading to peptidoglycan precursor biosynthesis, and have been suggested as being part of a multicomponent complex that could also involve the transglycosylase MurG and the cytoskeletal protein MreB. In order to initialize the characterization of a potential Mur interaction network, we purified MurD, MurE, MurF, MurG and MreB from Thermotoga maritima and characterized their interactions using membrane blotting and surface plasmon resonance. MurD, MurE and MurF all recognize MurG and MreB, but not each other, while the two latter proteins interact. In addition, we solved the crystal structures of MurD, MurE and MurF, which indicate that their C-termini display high conformational flexibilities. The differences in Mur conformations could be important parameters for the stability of an intracytoplasmic murein biosynthesis complex.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Peptidoglicano/biossíntese , Thermotoga maritima/metabolismo , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Membrana Celular/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , Proteínas do Citoesqueleto/isolamento & purificação , Cinética , Modelos Moleculares , N-Acetilglucosaminiltransferases/isolamento & purificação , Peptídeo Sintases/química , Peptídeo Sintases/isolamento & purificação , Peptídeo Sintases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
15.
Biochem J ; 441(3): 833-41, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22013894

RESUMO

RrgB is the major pilin which forms the pneumococcal pilus backbone. We report the high-resolution crystal structure of the full-length form of RrgB containing the IPQTG sorting motif. The RrgB fold is organized into four distinct domains, D1-D4, each of which is stabilized by an isopeptide bond. Crystal packing revealed a head-to-tail organization involving the interaction of the IPQTG motif into the D1 domain of two successive RrgB monomers. This fibrillar assembly, which fits into the electron microscopy density map of the native pilus, probably induces the formation of the D1 isopeptide bond as observed for the first time in the present study, since neither in published structures nor in soluble RrgB produced in Escherichia coli or in Streptococcus pneumoniae is the D1 bond present. Experiments performed in live bacteria confirmed that the intermolecular bond linking the RrgB subunits takes place between the IPQTG motif of one RrgB subunit and the Lys183 pilin motif residue of an adjacent RrgB subunit. In addition, we present data indicating that the D1 isopeptide bond is involved in RrgB stabilization. In conclusion, the crystal RrgB fibre is a compelling model for deciphering the molecular details required to generate the pneumococcal pilus.


Assuntos
Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Multimerização Proteica , Streptococcus pneumoniae , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Cristalização , Cristalografia por Raios X , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Ligação de Hidrogênio , Fibras Minerais , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Multimerização Proteica/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
16.
Structure ; 31(6): 700-712.e4, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059096

RESUMO

The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.


Assuntos
Escherichia coli , Policetídeo Sintases , Policetídeo Sintases/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Escherichia coli/genética , Escherichia coli/metabolismo
17.
Exp Biol Med (Maywood) ; 248(19): 1657-1670, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38030964

RESUMO

Bacterial cell wall formation is essential for cellular survival and morphogenesis. The peptidoglycan (PG), a heteropolymer that surrounds the bacterial membrane, is a key component of the cell wall, and its multistep biosynthetic process is an attractive antibacterial development target. Penicillin-binding proteins (PBPs) are responsible for cross-linking PG stem peptides, and their central role in bacterial cell wall synthesis has made them the target of successful antibiotics, including ß-lactams, that have been used worldwide for decades. Following the discovery of penicillin, several other compounds with antibiotic activity have been discovered and, since then, have saved millions of lives. However, since pathogens inevitably become resistant to antibiotics, the search for new active compounds is continuous. The present review highlights the ongoing development of inhibitors acting mainly in the transpeptidase domain of PBPs with potential therapeutic applications for the development of new antibiotic agents. Both the critical aspects of the strategy, design, and structure-activity relationships (SAR) are discussed, covering the main published articles over the last 10 years. Some of the molecules described display activities against main bacterial pathogens and could open avenues toward the development of new, efficient antibacterial drugs.


Assuntos
Antibacterianos , beta-Lactamas , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , beta-Lactamas/química , beta-Lactamas/farmacologia , Penicilinas/química , Penicilinas/metabolismo , Penicilinas/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/química
18.
J Biol Chem ; 286(45): 38833-43, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21878629

RESUMO

Interaction of bacterial outer membrane secretin PulD with its dedicated lipoprotein chaperone PulS relies on a disorder-to-order transition of the chaperone binding (S) domain near the PulD C terminus. PulS interacts with purified S domain to form a 1:1 complex. Circular dichroism, one-dimensional NMR, and hydrodynamic measurements indicate that the S domain is elongated and intrinsically disordered but gains secondary structure upon binding to PulS. Limited proteolysis and mass spectrometry identified the 28 C-terminal residues of the S domain as a minimal binding site with low nanomolar affinity for PulS in vitro that is sufficient for outer membrane targeting of PulD in vivo. The region upstream of this binding site is not required for targeting or multimerization and does not interact with PulS, but it is required for secretin function in type II secretion. Although other secretin chaperones differ substantially from PulS in sequence and secondary structure, they have all adopted at least superficially similar mechanisms of interaction with their cognate secretins, suggesting that intrinsically disordered regions facilitate rapid interaction between secretins and their chaperones.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Chaperonas Moleculares/química , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Mol Microbiol ; 82(6): 1422-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22098633

RESUMO

A crucial aspect of the functionality of bacterial type II secretion systems is the targeting and assembly of the outer membrane secretin. In the Klebsiella oxytoca type II secretion system, the lipoprotein PulS, a pilotin, targets secretin PulD monomers through the periplasm to the outer membrane. We present the crystal structure of PulS, an all-helical bundle that is structurally distinct from proteins with similar functions. Replacement of valine at position 42 in a charged groove of PulS abolished complex formation between a non-lipidated variant of PulS and a peptide corresponding to the unfolded region of PulD to which PulS binds (the S-domain), in vitro, as well as PulS function in vivo. Substitutions of other residues in the groove also diminished the interaction with the S-domain in vitro but exerted less marked effects in vivo. We propose that the interaction between PulS and the S-domain is maintained through a structural adaptation of the two proteins that could be influenced by cis factors such as the fatty acyl groups on PulS, as well as periplasmic trans-acting factors, which represents a possible paradigm for chaperone-target protein interactions.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos , Klebsiella oxytoca/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Klebsiella oxytoca/química , Klebsiella oxytoca/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
Mol Microbiol ; 82(1): 68-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21801243

RESUMO

The definition of bacterial cell shape is a complex process requiring the participation of multiple components of an intricate macromolecular machinery. We aimed at characterizing the determinants involved in cell shape of the helical bacterium Helicobacter pylori. Using a yeast two-hybrid screen with the key cell elongation protein PBP2 as bait, we identified an interaction between PBP2 and MreC. The minimal region of MreC required for this interaction ranges from amino acids 116 to 226. Using recombinant proteins, we showed by affinity and size exclusion chromatographies and surface plasmon resonance that PBP2 and MreC form a stable complex. In vivo, the two proteins display a similar spatial localization and their complex has an apparent 1:1 stoichiometry; these results were confirmed in vitro by analytical ultracentrifugation and chemical cross-linking. Small angle X-ray scattering analyses of the PBP2 : MreC complex suggest that MreC interacts directly with the C-terminal region of PBP2. Depletion of either PBP2 or MreC leads to transition into spherical cells that lose viability. Finally, the specific expression in trans of the minimal interacting domain of MreC with PBP2 in the periplasmic space leads to cell rounding, suggesting that the PBP2/MreC complex formation in vivo is essential for cell morphology.


Assuntos
Proteínas de Bactérias/metabolismo , Helicobacter pylori/citologia , Helicobacter pylori/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Helicobacter pylori/química , Helicobacter pylori/genética , Viabilidade Microbiana , Dados de Sequência Molecular , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA