Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835038

RESUMO

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Integrina alfa6 , Proteína Supressora de Tumor p53 , Animais , Integrina alfa6/metabolismo , Integrina alfa6/genética , Feminino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Células-Tronco/metabolismo , Deleção de Genes , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo
2.
Development ; 147(19)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32895290

RESUMO

The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6aF/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.


Assuntos
Glândulas Mamárias Humanas/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Western Blotting , Linhagem Celular , Feminino , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Glândulas Mamárias Humanas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição STAT5/genética , Proteínas rab de Ligação ao GTP/genética
3.
Development ; 147(4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31988184

RESUMO

Integrin dimers α3/ß1, α6/ß1 and α6/ß4 are the mammary epithelial cell receptors for laminins, which are major components of the mammary basement membrane. The roles of specific basement membrane components and their integrin receptors in the regulation of functional gland development have not been analyzed in detail. To investigate the functions of laminin-binding integrins, we obtained mutant mice with mammary luminal cell-specific deficiencies of the α3 and α6 integrin chains generated using the Cre-Lox approach. During pregnancy, mutant mice displayed decreased luminal progenitor activity and retarded lobulo-alveolar development. Mammary glands appeared functional at the onset of lactation in mutant mice; however, myoepithelial cell morphology was markedly altered, suggesting cellular compensation mechanisms involving cytoskeleton reorganization. Notably, lactation was not sustained in mutant females, and the glands underwent precocious involution. Inactivation of the p53 gene rescued the growth defects but did not restore lactogenesis in mutant mice. These results suggest that the p53 pathway is involved in the control of mammary cell proliferation and survival downstream of laminin-binding integrins, and underline an essential role of cell interactions with laminin for lactogenic differentiation.


Assuntos
Integrinas/fisiologia , Lactação , Glândulas Mamárias Animais/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Citoesqueleto/fisiologia , Progressão da Doença , Feminino , Deleção de Genes , Hormônios/fisiologia , Integrina alfa3/fisiologia , Integrina alfa6/fisiologia , Integrina beta1/fisiologia , Integrina beta4/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Mutantes , Mutação , Células-Tronco Neoplásicas/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/fisiologia , Fenótipo , Gravidez , Prenhez , Prognóstico , Ligação Proteica , Multimerização Proteica
4.
J Cell Sci ; 133(12)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32467329

RESUMO

Recent developments in techniques for tissue clearing and size reduction have enabled optical imaging of whole organs and the study of rare tumorigenic events in vivo The adult mammary gland provides a unique model for investigating physiological or pathological processes such as morphogenesis or epithelial cell dissemination. Here, we establish a new pipeline to study rare cellular events occurring in the mammary gland, by combining orthotopic transplantation of mammary organoids with the uDISCO organ size reduction and clearing method. This strategy allows us to analyze the behavior of individually labeled cells in regenerated mammary gland. As a proof of concept, we analyzed the localization of rare epithelial cells overexpressing atypical protein kinase C iota (also known as PRKCI, referred to here as aPKCι) with an N-terminal eGFP fusion (GFP-aPKCι+) in the normal mammary gland. Using this analytical pipeline, we were able to visualize epithelial aPKCι+ cells escaping from the normal mammary epithelium and disseminating into the surrounding stroma. This technical resource should benefit mammary development and tumor progression studies.


Assuntos
Glândulas Mamárias Humanas , Organoides , Animais , Células Epiteliais , Epitélio , Humanos , Glândulas Mamárias Animais , Morfogênese
5.
Cell Mol Life Sci ; 78(15): 5681-5705, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34156490

RESUMO

17ß-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear "genomic" or membrane "non-genomic" actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinogênese/metabolismo , Feminino , Humanos
6.
EMBO J ; 36(2): 165-182, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27974362

RESUMO

SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild-type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Colágeno/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Animais , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout
7.
Development ; 145(4)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29361573

RESUMO

Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/ß-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of ß-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/ß-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/ß-catenin signaling, a key pathway in mammary development and tumorigenesis.


Assuntos
Glicoproteínas de Membrana/metabolismo , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Animais Geneticamente Modificados , Western Blotting , Carcinogênese/metabolismo , Técnicas de Cultura de Células , Citometria de Fluxo , Imunofluorescência , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Via de Sinalização Wnt/genética
8.
Breast Cancer Res ; 21(1): 13, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683141

RESUMO

BACKGROUND: The adult mammary epithelium is composed of basal and luminal cells. The luminal lineage comprises two major cell populations, positive and negative for estrogen and progesterone receptors (ER and PR, respectively), both containing clonogenic progenitor cells. Deregulated ER/PR- luminal progenitor cells are suspected to be at the origin of basal-type triple-negative (TNBC) breast cancers, a subtype frequently associated with loss of P53 function and MET signaling hyperactivation. Using mouse models, we recently reported that p53 restricts luminal progenitor cell amplification whereas paracrine Met activation stimulates their growth and favors a luminal-to-basal switch. Here, we analyzed how these two critical pathways interact to control luminal progenitor function. METHODS: We have (i) established and analyzed the gene expression profile of luminal progenitors isolated by ICAM-1, a robust surface marker we previously identified; (ii) purified luminal progenitors from p53-deficient and p53-proficient mouse mammary epithelium to compare their functional and molecular characteristics; and (iii) analyzed their response to HGF, the major Met ligand, in three-dimensional cultures. RESULTS: We found that luminal progenitors, compared to non-clonogenic luminal cells, overexpress Trp53 and numerous p53 target genes. In vivo, loss of Trp53 induced the expansion of luminal progenitors, affecting expression of several important p53 target genes including those encoding negative regulators of cell cycle progression. Consistently, p53-deficient luminal progenitors displayed increased proliferative and self-renewal activities in culture. However, they did not exhibit perturbed expression of luminal-specific markers and major regulators, such as Hey1, Elf5, and Gata3. Moreover, although expressing Met at higher level than p53-proficient luminal progenitors, p53-deficient luminal progenitors failed to acquire basal-specific features when stimulated by HGF, showing that p53 promotes the plastic behavior of luminal progenitors downstream of Met activation. CONCLUSIONS: Our study reveals a crosstalk between Met- and p53-mediated signaling pathways in the regulation of luminal progenitor function. In particular, it shows that neither p53 loss alone nor p53 loss combined with Met signaling activation caused an early detectable cell fate alteration in luminal progenitors. Conceivably, additional events are required to confer basal-specific characteristics to luminal-derived TNBCs.


Assuntos
Plasticidade Celular/fisiologia , Glândulas Mamárias Animais/citologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Células-Tronco/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular/fisiologia , Células Epiteliais/fisiologia , Feminino , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética
9.
Semin Cell Dev Biol ; 23(5): 599-605, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22430758

RESUMO

Integrins are ubiquitously expressed major cell surface receptors for extracellular matrix. Integrin interaction with their extracellular ligands triggers activation of the intracellular signaling pathways that control cell shape, motility, proliferation, survival, cell-type-specific gene expression. In this review, we summarize recent studies analyzing contribution of integrins to the control of the mammary morphogenesis and differentiation, function and maintenance of mammary stem and progenitor cells and resume the data from mouse models revealing the contribution of the integrin-mediated signaling to mammary tumorigenesis.


Assuntos
Integrinas/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
10.
Stem Cells ; 31(9): 1857-67, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712598

RESUMO

Mammary epithelium comprises a layer of luminal cells and a basal myoepithelial cell layer. Both mammary epithelial compartments, basal and luminal, contain stem and progenitor cells, but only basal cells are capable of gland regeneration upon transplantation. Aberrant expansion of stem/progenitor cell populations is considered to contribute to breast tumorigenesis. Germline deletions of p53 in humans and mice confer a predisposition to tumors, and stem cell frequency is abnormally high in the mammary epithelium of p53-deficient mice. However, it is unknown whether stem/progenitor cell amplification occurs in both, basal and luminal cell populations in p53-deficient mammary tissue. We used a conditional gene deletion approach to study the role of p53 in stem/progenitor cells residing in the mammary luminal and basal layers. Using two- and three-dimensional cell culture assays, we showed that p53 loss led to the expansion of clonogenic stem/progenitor cells in both mammary epithelial cell layers. Moreover, following p53 deletion, luminal and basal stem/progenitor cells acquired a capacity for unlimited propagation in mammosphere culture. Furthermore, limiting dilution and serial transplantation assays revealed amplification and enhanced self-renewal in the basal regenerating cell population of p53-deficient mammary epithelium. Our data suggest that the increase in stem/progenitor cell activity may be, at least, partially mediated by the Notch pathway. Taken together, these results strongly indicate that p53 restricts the propagation and self-renewal of stem/progenitor cells in both layers of the mammary epithelium providing further insight into the impact of p53 loss in breast cancerogenesis.


Assuntos
Compartimento Celular , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Contagem de Células , Proliferação de Células , Células Clonais , Células Epiteliais/metabolismo , Feminino , Deleção de Genes , Humanos , Integrases/metabolismo , Queratina-5/genética , Camundongos , Regiões Promotoras Genéticas/genética , Receptores Notch/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Mol Cancer ; 12(1): 132, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24171719

RESUMO

BACKGROUND: Basal-like breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Recent studies have linked activation of the Wnt/ß-catenin pathway, and its downstream target, Myc, to basal-like breast cancer. Transgenic mice K5ΔNßcat previously generated by our team present a constitutive activation of Wnt/ß-catenin signaling in the basal myoepithelial cell layer, resulting in focal mammary hyperplasias that progress to invasive carcinomas. Mammary lesions developed by K5ΔNßcat mice consist essentially of basal epithelial cells that, in contrast to mammary myoepithelium, do not express smooth muscle markers. METHODS: Microarray analysis was used to compare K5ΔNßcat mouse tumors to human breast tumors, mammary cancer cell lines and the tumors developed in other mouse models. Cre-Lox approach was employed to delete Myc from the mammary basal cell layer of K5ΔNßcat mice. Stem cell amplification in K5ΔNßcat mouse mammary epithelium was assessed with 3D-culture and transplantation assays. RESULTS: Histological and microarray analyses of the mammary lesions of K5ΔNßcat females revealed their high similarity to a subset of basal-like human breast tumors with squamous differentiation. As in human basal-like carcinomas, the Myc pathway appeared to be activated in the mammary lesions of K5ΔNßcat mice. We found that a basal cell population with stem/progenitor characteristics was amplified in K5ΔNßcat mouse preneoplastic glands. Finally, the deletion of Myc from the mammary basal layer of K5ΔNßcat mice not only abolished the regenerative capacity of basal epithelial cells, but, in addition, completely prevented the tumorigenesis. CONCLUSIONS: These results strongly indicate that ß-catenin-induced stem cell amplification and tumorigenesis rely ultimately on the Myc pathway activation and reinforce the hypothesis that basal stem/progenitor cells may be at the origin of a subset of basal-like breast tumors.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Células-Tronco Neoplásicas/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , beta Catenina/metabolismo , Animais , Carcinogênese/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/genética , Deleção de Sequência , Células Tumorais Cultivadas , Via de Sinalização Wnt , beta Catenina/genética
12.
Stem Cells ; 30(6): 1246-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22438054

RESUMO

The mammary epithelium comprises two major cell lineages: basal and luminal. Basal cells (BCs) isolated from the mammary epithelium and transplanted into the mouse mammary fat pad cleared from the endogenous epithelium regenerate the mammary gland, strongly suggesting that the basal epithelial compartment harbors a long-lived cell population with multipotent stem cell potential. The luminal cell layer is devoid of the regenerative potential, but it contains cells with clonogenic capacity, the luminal progenitors. Mammary BCs and luminal progenitors express high levels of the transcription factor Myc. Here, we show that deletion of Myc from mammary basal epithelial cells led to impaired stem cell self-renewal as evaluated by limiting dilution and serial transplantation assays. Luminal progenitor population was significantly diminished in mutant epithelium suggesting control by the BC layer. Colony formation assay performed with isolated BCs showed that clonogenic capacity was abolished by Myc deletion. Moreover, transplanted BCs depleted of Myc failed to produce epithelial outgrowths. Stimulation with ovarian hormones estrogen (E) and progesterone (P) partially rescued the repopulation capacity of Myc-depleted BCs; however, the Myc-deficient mammary epithelium developed in response to E/P treatment lacked stem and progenitor cells. This study provides the first evidence that in the mammary gland, Myc has an essential nonredundant function in the maintenance of the self-renewing multipotent stem cell population responsible for the regenerative capacity of the mammary epithelium and is required downstream from ovarian hormones, for the control of mammary stem and progenitor cell functions.


Assuntos
Glândulas Mamárias Animais/citologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Epiteliais/transplante , Feminino , Glândulas Mamárias Animais/fisiologia , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia
13.
Methods Mol Biol ; 2471: 123-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35175594

RESUMO

The orthotopic transplantation assay has provided important insights into mammary development, stem cell function, and tumorigenesis. Technically, it consists in grafting mammary tissue fragments, organoids, mammospheres, or isolated cells into the fat pads of prepubertal mice from which the endogenous epithelium has been surgically removed, thereby allowing growth and differentiation of mammary epithelial cells in their physiological environment. Here, we describe how is conducted transplantation of epithelial fragments and cells isolated from mouse mammary glands, report the various approaches currently used to evaluate the regeneration and self-renewal properties of mammary stem cells, and highlight the strengths and limitations of this in vivo grafting assay.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Animais , Diferenciação Celular , Células Epiteliais/transplante , Epitélio/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/fisiologia , Camundongos , Células-Tronco
14.
Cell Mol Life Sci ; 67(13): 2311-22, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20352469

RESUMO

CD24 is expressed on mammary stem cells and is used as a marker for their isolation, yet its function in the mammary gland still needs to be examined. Here we show that CD24 is expressed throughout the luminal epithelial cell layer, but only weakly in myoepithelial cells. During lactation, CD24 expression was suppressed within alveoli, but upregulated post-lactation, returning to a pre-pregnant spatial distribution. CD24-deficient mice exhibited an accelerated mammary gland ductal extension during puberty and an enhanced branching morphogenesis, resulting in increased furcation in the ductal structure. CD24-/- mammary epithelial cells were able to completely repopulate cleared mammary fat pads and to give rise to fully functional mammary glands. Together, these data suggest that while CD24 is expressed in mammary epithelium compartments thought to contain stem cells, CD24 is not a major regulator of mammary stem/progenitor cell function, but rather plays a role in governing branching morphogenesis.


Assuntos
Antígeno CD24/metabolismo , Glândulas Mamárias Animais/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Antígeno CD24/genética , Antígeno CD52 , Células Epiteliais/metabolismo , Feminino , Glicoproteínas/metabolismo , Lactação , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
J Cell Biol ; 159(3): 453-63, 2002 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-12427868

RESUMO

The bilayered mammary epithelium comprises a luminal layer of secretory cells and a basal layer of myoepithelial cells. Numerous data suggest the existence of self-renewing, pluripotent mammary stem cells; however, their molecular characteristics and differentiation pathways are largely unknown. BC44 mammary epithelial cells in culture, display phenotypic characteristics of basal epithelium, i.e., express basal cytokeratins 5 and 14 and P-cadherin, but no smooth muscle markers. In vivo, after injection into the cleared mammary fat pad, these cells gave rise to bilayered, hollow, alveolus-like structures comprising basal cells expressing cytokeratin 5 and luminal cells positive for cytokeratin 8 and secreting beta-casein in a polarized manner into the lumen. The persistent stimulation of EGF receptor signaling pathway in BC44 cells in culture resulted in the loss of the in vivo morphogenetic potential and led to the induction of active MMP2, thereby triggering cell scattering and motility on laminin 5. These data (a) suggest that BC44 cells are capable of asymmetric division for self-renewal and the generation of a differentiated progeny restricted to the luminal lineage; (b) clarify the function of EGF in the control of the BC44 cell phenotypic plasticity; and (c) suggest a role for this phenomenon in the mammary gland development.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Células-Tronco/fisiologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/transplante , Proteínas da Matriz Extracelular/metabolismo , Feminino , Citometria de Fluxo , Integrinas/metabolismo , Glândulas Mamárias Animais/anatomia & histologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fatores de Tempo
16.
Stem Cell Reports ; 12(4): 831-844, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30905738

RESUMO

Integrins, which bind laminin, a major component of the mammary basement membrane, are strongly expressed in basal stem cell-enriched populations, but their role in controlling mammary stem cell function remains unclear. We found that stem cell activity, as evaluated in transplantation and mammosphere assays, was reduced in mammary basal cells depleted of laminin receptors containing α3- and α6-integrin subunits. This was accompanied by low MDM2 levels, p53 stabilization, and diminished proliferative capacity. Importantly, disruption of p53 function restored the clonogenicity of α3/α6-integrin-depleted mammary basal stem cells, while inhibition of RHO or myosin II, leading to decreased p53 activity, rescued the mammosphere formation. These data suggest that α3/α6-integrin-mediated adhesion plays an essential role in controlling the proliferative potential of mammary basal stem/progenitor cells through myosin II-mediated regulation of p53 and indicate that laminins might be important components of the mammary stem cell niche.

17.
FEBS Lett ; 581(5): 831-6, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17292359

RESUMO

P-cadherin expression is restricted to the basal layer of stratified epithelia including that of the mammary gland. Although evidence for an important role of P-cadherin in mammary morphogenesis and tumorigenesis is increasing, the mechanisms that regulate its expression are poorly understood. We show that in basal mammary epithelial cells, beta-catenin is associated with the P-cadherin promoter and activates its expression independently of LEF/TCF in a cell-type specific manner. Down-regulation of endogenous beta-catenin levels by RNA interference technique inhibited P-cadherin promoter activity. In vivo, in skin and mammary gland of mutant mice, activation of beta-catenin signalling correlates with up-regulation of P-cadherin expression. These data suggest that beta-catenin-dependent modulation of P-cadherin expression can contribute to the establishment of the basal phenotype.


Assuntos
Caderinas/genética , Glândulas Mamárias Animais/metabolismo , beta Catenina/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Núcleo Celular/metabolismo , Primers do DNA/genética , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Pele/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/deficiência , beta Catenina/genética
18.
Mol Biol Cell ; 13(10): 3521-31, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12388754

RESUMO

To study the mechanism of beta1-integrin function in vivo, we have generated transgenic mouse expressing a dominant negative mutant of beta1-integrin under the control of mouse mammary tumor virus (MMTV) promoter (MMTV-beta1-cyto). Mammary glands from MMTV-beta1-cyto transgenic females present significant growth defects during pregnancy and lactation and impaired differentiation of secretory epithelial cells at the onset of lactation. We report herein that perturbation of beta1-integrin function in involuting mammary gland induced precocious dedifferentiation of the secretory epithelium, as shown by the premature decrease in beta-casein and whey acidic protein mRNA levels, accompanied by inactivation of STAT5, a transcription factor essential for mammary gland development and up-regulation of nuclear factor-kappaB, a negative regulator of STAT5 signaling. This is the first study demonstrating in vivo that cell-extracellular matrix interactions involving beta1-integrins play an important role in the control of milk gene transcription and in the maintenance of the mammary epithelial cell differentiated state.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Integrina beta1/metabolismo , Lactação/fisiologia , Glândulas Mamárias Animais/fisiologia , Proteínas Proto-Oncogênicas , Animais , Apoptose/fisiologia , Antígenos CD4/genética , Antígenos CD4/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Feminino , Genes Reporter , Integrina beta1/genética , Janus Quinase 2 , Glândulas Mamárias Animais/citologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Transgênicos , Proteínas do Leite/genética , NF-kappa B/metabolismo , Gravidez , Regiões Promotoras Genéticas , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT5 , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismo
19.
Med Sci (Paris) ; 23(12): 1125-31, 2007 Dec.
Artigo em Francês | MEDLINE | ID: mdl-18154715

RESUMO

The postnatal mammary morphogenesis comprises two steps, first, formation of a system of branching ducts at puberty and second, alveologenesis during pregnancy. The mammary epithelium is organized as a bilayer, composed of two cellular types, basal myoepithelial and luminal epithelial. The remarkable regenerative properties revealed in serial transplantation experiments suggest that the adult mammary epithelium harbors stem cells. Various strategies including analysis of DNA label-retaining cells, transgenic approach, and in vivo transplantation assay, have been used to isolate and characterize murine mammary stem and progenitor cells. Their molecular characteristics remain to be defined precisely but notable progress have been already made in the enrichment and identification of these cells. Current studies favor the hypothesis of a basal-type mammary stem cells expressing high levels of alpha 6, beta1 and beta 3 integrin chains, the major receptors of extracellular matrix proteins. Luminal-type progenitors may participate in the establishment of the bilayered alveolar epithelium during pregnancy.


Assuntos
Glândulas Mamárias Animais/citologia , Células-Tronco/citologia , Envelhecimento , Animais , Feminino , Integrinas/genética , Integrinas/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Morfogênese , Maturidade Sexual
20.
Methods Mol Biol ; 1293: 161-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26040687

RESUMO

The transplantation of mammary epithelial cells into the cleared fat pad allows their growth and differentiation in their normal physiological environment. This technique involves the grafting of tissue fragments or isolated cells into the mammary fat pads of prepubertal mice from which the endogenous epithelium has been surgically removed. Such transplantation assays are particularly useful for the analysis of morphogenetic potential and stem cell activity in normal mammary epithelium and breast tumors. We describe here the main steps in the transplantation of epithelial fragments and isolated cells from mouse mammary glands and the various approaches currently used to evaluate the regeneration and self-renewal properties of mammary stem cells.


Assuntos
Tecido Adiposo , Transplante de Células , Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Animais , Separação Celular/métodos , Transplante de Células/métodos , Feminino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA