RESUMO
BACKGROUND: More sensitive and less burdensome efficacy end points are urgently needed to improve the effectiveness of clinical drug development for Alzheimer disease (AD). Although conventional end points lack sensitivity, digital technologies hold promise for amplifying the detection of treatment signals and capturing cognitive anomalies at earlier disease stages. Using digital technologies and combining several test modalities allow for the collection of richer information about cognitive and functional status, which is not ascertainable via conventional paper-and-pencil tests. OBJECTIVE: This study aimed to assess the psychometric properties, operational feasibility, and patient acceptance of 10 promising technologies that are to be used as efficacy end points to measure cognition in future clinical drug trials. METHODS: The Method for Evaluating Digital Endpoints in Alzheimer Disease study is an exploratory, cross-sectional, noninterventional study that will evaluate 10 digital technologies' ability to accurately classify participants into 4 cohorts according to the severity of cognitive impairment and dementia. Moreover, this study will assess the psychometric properties of each of the tested digital technologies, including the acceptable range to assess ceiling and floor effects, concurrent validity to correlate digital outcome measures to traditional paper-and-pencil tests in AD, reliability to compare test and retest, and responsiveness to evaluate the sensitivity to change in a mild cognitive challenge model. This study included 50 eligible male and female participants (aged between 60 and 80 years), of whom 13 (26%) were amyloid-negative, cognitively healthy participants (controls); 12 (24%) were amyloid-positive, cognitively healthy participants (presymptomatic); 13 (26%) had mild cognitive impairment (predementia); and 12 (24%) had mild AD (mild dementia). This study involved 4 in-clinic visits. During the initial visit, all participants completed all conventional paper-and-pencil assessments. During the following 3 visits, the participants underwent a series of novel digital assessments. RESULTS: Participant recruitment and data collection began in June 2020 and continued until June 2021. Hence, the data collection occurred during the COVID-19 pandemic (SARS-CoV-2 virus pandemic). Data were successfully collected from all digital technologies to evaluate statistical and operational performance and patient acceptance. This paper reports the baseline demographics and characteristics of the population studied as well as the study's progress during the pandemic. CONCLUSIONS: This study was designed to generate feasibility insights and validation data to help advance novel digital technologies in clinical drug development. The learnings from this study will help guide future methods for assessing novel digital technologies and inform clinical drug trials in early AD, aiming to enhance clinical end point strategies with digital technologies. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/35442.
RESUMO
Background: Digital technologies have the potential to provide objective and precise tools to detect depression-related symptoms. Deployment of digital technologies in clinical research can enable collection of large volumes of clinically relevant data that may not be captured using conventional psychometric questionnaires and patient-reported outcomes. Rigorous methodology studies to develop novel digital endpoints in depression are warranted. Objective: We conducted an exploratory, cross-sectional study to evaluate several digital technologies in subjects with major depressive disorder (MDD) and persistent depressive disorder (PDD), and healthy controls. The study aimed at assessing utility and accuracy of the digital technologies as potential diagnostic tools for unipolar depression, as well as correlating digital biomarkers to clinically validated psychometric questionnaires in depression. Methods: A cross-sectional, non-interventional study of 20 participants with unipolar depression (MDD and PDD/dysthymia) and 20 healthy controls was conducted at the Centre for Human Drug Research (CHDR), the Netherlands. Eligible participants attended three in-clinic visits (days 1, 7, and 14), at which they underwent a series of assessments, including conventional clinical psychometric questionnaires and digital technologies. Between the visits, there was at-home collection of data through mobile applications. In all, seven digital technologies were evaluated in this study. Three technologies were administered via mobile applications: an interactive tool for the self-assessment of mood, and a cognitive test; a passive behavioral monitor to assess social interactions and global mobility; and a platform to perform voice recordings and obtain vocal biomarkers. Four technologies were evaluated in the clinic: a neuropsychological test battery; an eye motor tracking system; a standard high-density electroencephalogram (EEG)-based technology to analyze the brain network activity during cognitive testing; and a task quantifying bias in emotion perception. Results: Our data analysis was organized by technology - to better understand individual features of various technologies. In many cases, we obtained simple, parsimonious models that have reasonably high diagnostic accuracy and potential to predict standard clinical outcome in depression. Conclusion: This study generated many useful insights for future methodology studies of digital technologies and proof-of-concept clinical trials in depression and possibly other indications.
RESUMO
Retinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic Rorc deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development. RORC inhibitors effectively inhibited Th17 differentiation and IL-17A production, and delayed-type hypersensitivity reactions. In vitro, RORC inhibitors induced apoptosis, as well as Bcl2l1 and BCL2L1 mRNA downregulation, in mouse and nonhuman primate thymocytes, respectively. Chronic, 13-week RORC inhibitor treatment in rats caused progressive thymic alterations in all analyzed rats similar to those in Rorc-deficient mice prior to T cell lymphoma development. One rat developed thymic cortical hyperplasia with preneoplastic features, including increased mitosis and reduced IKAROS expression, albeit without skewed T cell clonality. In summary, pharmacological inhibition of RORC not only blocks Th17 cell development and related cytokine production, but also recapitulates thymic aberrations seen in Rorc-deficient mice. While RORC inhibition may offer an effective therapeutic principle for Th17-mediated diseases, T cell lymphoma with chronic therapy remains an apparent risk.
Assuntos
Receptores do Ácido Retinoico/antagonistas & inibidores , Células Th17/citologia , Timo/patologia , Animais , Regulação para Baixo , Feminino , Expressão Gênica , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/genética , Células Th17/metabolismoRESUMO
Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and suggest that the optimal time to assess potentially transcriptionally mediated physiologic effects will be delayed relative to an epigenetic drug's Tmax/Cmax.
Assuntos
Coração/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Transcrição Gênica , Animais , Transporte Biológico , Cães , Coração/fisiologia , Inibidores de Histona Desacetilases/farmacocinética , MasculinoRESUMO
The contribution of the renin-angiotensin-aldosterone system (RAAS) to the development of congestive heart failure (CHF) and hypertension (HT) has long been recognized. Medications that are commonly used in the course of CHF and HT are most often given with morning food for the sake of convenience and therapeutic compliance. However, biological rhythms and their responsiveness to environmental clues such as food intake may noticeably impact the effectiveness of drugs used in the management of cardiovascular disorders. Only sparse information about the effect of feeding schedules on the biology of the RAAS and blood pressure (BP) is presently available. Two studies were designed to explore the chronobiology of renin activity (RA), BP, renal sodium (UNa,fe) and potassium (UK,fe) handling in relation to meal timing in dogs. In a first experiment (Study a), blood and urinary samples for measurement of RA, UNa,fe and UK,fe were drawn from 18 healthy beagle dogs fed a normal-sodium diet at either 07:00, 13:00 or 19:00 h. In a second experiment (Study b), BP was recorded continuously from six healthy, telemetered beagle dogs fed a similar diet at 07:00, or 19:00 h. Data were collected throughout 24-h time periods, and analyzed by means of nonlinear mixed-effects models. Differences between the geometric means of early versus late time after feeding observations were further compared using parametric statistics. In agreement with our previous investigations, the results indicate that RA, UNa,fe, UK,fe, systolic, and diastolic BP oscillate with a circadian periodicity in dogs fed a regular diet at 07:00 h. A cosine model with a fixed 24-h period was found to fit the variations of RA, UK,fe and BP well, whereas cyclic changes in UNa,fe were best characterized by means of a combined cosine and surge model, reflecting a postprandial sodium excretion followed by a monotonous decay. Our data show that feeding time has a marked influence on the chronobiology of the renin cascade, urinary electrolytes, and BP. Introducing a 6- or 12-h delay in the dogs' feeding schedule caused a shift of similar magnitude (05:06 and 12:32 h for Studies a and b, respectively) in the rhythm of these biomarkers. In all study groups, RA and BP exhibited a marked fall just after food intake. The drop in RA is consistent with sodium and water-induced body fluid expansion, while the reduction of BP could be related to the decreased activity of renin and the secretion of vasodilatory gut peptides. An approximately 1.5-fold (1.2-1.6-fold) change between the average early and late time after feeding observations was found for RA (p < 0.0001), UNa,fe (p < 0.01) and UK,fe (p < 0.05). Postprandial variations in BP, albeit small (ca. 10 mmHg), were statistically significant (p < 0.01) and supported by the model-based analysis. In conclusion, the timing of food intake appears to be pivotal to the circadian organization of the renin cascade and BP. This synchronizing effect could be mediated by feeding-related signals, such as dietary sodium, capable of entraining circadian oscillators downstream of the master, light-dark-adjusted pacemaker in the suprachiasmatic nucleus.
Assuntos
Pressão Sanguínea , Ritmo Circadiano , Ingestão de Alimentos , Comportamento Alimentar , Potássio/urina , Sistema Renina-Angiotensina , Renina/sangue , Sódio/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Distribuição de Qui-Quadrado , Cães , Feminino , Masculino , Dinâmica não Linear , Período Pós-Prandial , Fatores de TempoRESUMO
It is widely accepted that more needs to be done to bring new, safe, and efficacious drugs to the market. Cardiovascular toxicity detected both in early drug discovery as well as in the clinic, is a major contributor to the high failure rate of new molecules. The growth of translational safety offers a promising approach to improve the probability of success for new molecules. Here we describe a cross-company initiative to determine the concordance between the conscious telemetered dog and phase I outcome for 3 cardiovascular parameters. The data indicate that, in the context of the methods applied in this analysis, the ability to detect compounds that affect the corrected QT interval (QTc) was good within the 10-30x exposure range but the predictive or detective value for heart rate and diastolic blood pressure was poor. These findings may highlight opportunities to refine both the animal and the clinical study designs, as well as refocusing the assessment of value of dog cardiovascular assessments beyond phase 1. This investigation has also highlighted key considerations for cross-company data sharing and presents a unique learning opportunity to improve future translational projects.
Assuntos
Ensaios Clínicos Fase I como Assunto/estatística & dados numéricos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Indústria Farmacêutica/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Pesquisa Translacional Biomédica/métodos , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiotoxicidade , Ensaios Clínicos Fase I como Assunto/métodos , Ensaios Clínicos Fase I como Assunto/normas , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/fisiopatologia , Eletrocardiografia , Voluntários Saudáveis , Frequência Cardíaca/efeitos dos fármacos , Humanos , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Telemetria , Pesquisa Translacional Biomédica/normas , Pesquisa Translacional Biomédica/estatística & dados numéricosRESUMO
The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in the regulation of blood pressure and volume homeostasis. Its contribution to the development of cardiovascular diseases has long been recognized. Extensive literature has shown that peptides of the RAAS oscillate with a circadian periodicity in humans, under strong influence of posture, sleep, and age. Although observations of time-variant changes in the renin cascade are available in dogs, no detailed chronobiological investigation has been conducted so far. The present studies were designed to explore the circadian variations of plasma renin activity (RA) and urinary aldosterone-to-creatinine ratio (UA:C) in relation to blood pressure (BP), sodium (UNa, UNa,fe), and potassium (UK, UK,fe) renal handling. Data derived from intensive blood and urine sampling, as well as continuous BP monitoring, were collected throughout a 24-h time period, and analyzed by means of nonlinear mixed-effects models. Differences between the geometric means of day and night observations were compared by parametric statistics. Our results show that variables of the renin cascade, BP, and urinary electrolytes oscillate with significant day-night differences in dogs. An approximately 2-fold (1.6-3.2-fold) change between the average day and night measurements was found for RA (p < 0.001), UA:C (p = 0.01), UK,fe (p = 0.01), and UNa (p = 0.007). Circadian variations in BP, albeit small (less than 10 mm Hg), were statistically significant (p < 0.01) and supported by the model-based analysis. For all variables but UNa and UNa,fe, the levels were higher at night than during the day. The data also indicate that blood pressure oscillates in parallel to the RAAS, such that, as opposed to healthy humans, BP does not drop at night in dogs. The postprandial decrease in RA is assumed to be related to body fluid volume expansion secondary to water and sodium intake, whereas the reduction of UA:C reflects aldosterone-stimulated secretion by the renin-angiotensin II pathway. UNa and UNa,fe peaked in the afternoon, about 7-8 h after food intake, which is consistent with the "impulse-response pattern" of sodium excretion described in previous publications. Finally, UK and UK,fe mirrored aldosterone-mediated potassium secretion in the kidney tubules. To describe the circadian variations of the various variables, two different mathematical representations were applied. A cosine model with a fixed 24-h period was found to fit the periodic variations of RA, UA:C, UK, UK,fe, and BP well, whereas changes in UNa and UNa,fe were best characterized by a surge model. The use of nonlinear mixed effects allowed estimation of population characteristics that can influence the periodicity of the RAAS. Specifically, sodium intake was found to interact with the tonic and the phasic secretion of renin, suggesting that varying feeding time could also impact the chronobiology of the renin cascade.
Assuntos
Pressão Sanguínea , Ritmo Circadiano , Rim/fisiologia , Sistema Renina-Angiotensina/fisiologia , Aldosterona/metabolismo , Angiotensinas/metabolismo , Animais , Área Sob a Curva , Cães , Feminino , Taxa de Filtração Glomerular , Rim/metabolismo , Masculino , Modelos Teóricos , Potássio/metabolismo , Potássio/urina , Renina/metabolismo , Sódio/metabolismo , Sódio/urina , Telemetria , Fatores de TempoRESUMO
MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.