Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0072223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754761

RESUMO

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Assuntos
Antivirais , Capsídeo , Vírus da Hepatite B , Hepatite B Crônica , Montagem de Vírus , Animais , Humanos , Camundongos , Antivirais/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Capsídeo/química , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Vírus da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Técnicas In Vitro , Montagem de Vírus/efeitos dos fármacos , Modelos Animais de Doenças
2.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102495

RESUMO

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/metabolismo , Capsídeo/metabolismo , Hepatócitos/metabolismo , Interferon-alfa/farmacologia , Hepatite B/metabolismo , DNA Viral/genética
3.
PLoS Pathog ; 17(12): e1010151, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914795

RESUMO

It is generally thought that the promoters of non-segmented, negative strand RNA viruses (nsNSVs) direct the polymerase to initiate RNA synthesis exclusively opposite the 3´ terminal nucleotide of the genome RNA by a de novo (primer independent) initiation mechanism. However, recent studies have revealed that there is diversity between different nsNSVs with pneumovirus promoters directing the polymerase to initiate at positions 1 and 3 of the genome, and ebolavirus polymerases being able to initiate at position 2 on the template. Studies with other RNA viruses have shown that polymerases that engage in de novo initiation opposite position 1 typically have structural features to stabilize the initiation complex and ensure efficient and accurate initiation. This raised the question of whether different nsNSV polymerases have evolved fundamentally different structural properties to facilitate initiation at different sites on their promoters. Here we examined the functional properties of polymerases of respiratory syncytial virus (RSV), a pneumovirus, human parainfluenza virus type 3 (PIV-3), a paramyxovirus, and Marburg virus (MARV), a filovirus, both on their cognate promoters and on promoters of other viruses. We found that in contrast to the RSV polymerase, which initiated at positions 1 and 3 of its promoter, the PIV-3 and MARV polymerases initiated exclusively at position 1 on their cognate promoters. However, all three polymerases could recognize and initiate from heterologous promoters, with the promoter sequence playing a key role in determining initiation site selection. In addition to examining de novo initiation, we also compared the ability of the RSV and PIV-3 polymerases to engage in back-priming, an activity in which the promoter template is folded into a secondary structure and nucleotides are added to the template 3´ end. This analysis showed that whereas the RSV polymerase was promiscuous in back-priming activity, the PIV-3 polymerase generated barely detectable levels of back-primed product, irrespective of promoter template sequence. Overall, this study shows that the polymerases from these three nsNSV families are fundamentally similar in their initiation properties, but have differences in their abilities to engage in back-priming.


Assuntos
Marburgvirus/enzimologia , Vírus da Parainfluenza 3 Humana/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sinciciais Respiratórios/enzimologia , Proteínas do Complexo da Replicase Viral/metabolismo , Animais , Células Cultivadas
4.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003463

RESUMO

Stimulator of interferon genes (STING) agonists have shown potent anti-tumor efficacy in various mouse tumor models and have the potential to overcome resistance to immune checkpoint inhibitors (ICI) by linking the innate and acquired immune systems. First-generation STING agonists are administered intratumorally; however, a systemic delivery route would greatly expand the clinical use of STING agonists. Biochemical and cell-based experiments, as well as syngeneic mouse efficacy models, were used to demonstrate the anti-tumoral activity of ALG-031048, a novel STING agonist. In vitro, ALG-031048 is highly stable in plasma and liver microsomes and is resistant to degradation via phosphodiesterases. The high stability in biological matrices translated to good cellular potency in a HEK 293 STING R232 reporter assay, efficient activation and maturation of primary human dendritic cells and monocytes, as well as long-lasting, antigen-specific anti-tumor activity in up to 90% of animals in the CT26 mouse colon carcinoma model. Significant reductions in tumor growth were observed in two syngeneic mouse tumor models following subcutaneous administration. Combinations of ALG-031048 and ICIs further enhanced the in vivo anti-tumor activity. This initial demonstration of anti-tumor activity after systemic administration of ALG-031048 warrants further investigation, while the combination of systemically administered ALG-031048 with ICIs offers an attractive approach to overcome key limitations of ICIs in the clinic.


Assuntos
Neoplasias do Colo , Neoplasias , Camundongos , Animais , Humanos , Células HEK293 , Neoplasias/patologia , Neoplasias do Colo/tratamento farmacológico , Modelos Animais de Doenças , Imunoterapia , Microambiente Tumoral
5.
Molecules ; 27(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35566268

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. While the development of vaccines and the emergence of antiviral therapeutics is promising, alternative strategies to combat COVID-19 (and potential future pandemics) remain an unmet need. Coronaviruses feature a unique mechanism that may present opportunities for therapeutic intervention: the RNA polymerase complex of coronaviruses is distinct in its ability to proofread and remove mismatched nucleotides during genome replication and transcription. The proofreading activity has been linked to the exonuclease (ExoN) activity of non-structural protein 14 (NSP14). Here, we review the role of NSP14, and other NSPs, in SARS-CoV-2 replication and describe the assays that have been developed to assess the ExoN function. We also review the nucleoside analogs and non-nucleoside inhibitors known to interfere with the proofreading activity of NSP14. Although not yet validated, the potential use of non-nucleoside proofreading inhibitors in combination with chain-terminating nucleosides may be a promising avenue for the development of anti-CoV agents.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Exorribonucleases/metabolismo , Humanos , Pandemias , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
6.
Biochem Biophys Res Commun ; 555: 134-139, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813272

RESUMO

There is an urgent need for antivirals targeting the SARS-CoV-2 virus to fight the current COVID-19 pandemic. The SARS-CoV-2 main protease (3CLpro) represents a promising target for antiviral therapy. The lack of selectivity for some of the reported 3CLpro inhibitors, specifically versus cathepsin L, raises potential safety and efficacy concerns. ALG-097111 potently inhibited SARS-CoV-2 3CLpro (IC50 = 7 nM) without affecting the activity of human cathepsin L (IC50 > 10 µM). When ALG-097111 was dosed in hamsters challenged with SARS-CoV-2, a robust and significant 3.5 log10 (RNA copies/mg) reduction of the viral RNA copies and 3.7 log10 (TCID50/mg) reduction in the infectious virus titers in the lungs was observed. These results provide the first in vivo validation for the SARS-CoV-2 3CLpro as a promising therapeutic target for selective small molecule inhibitors.


Assuntos
Amidas/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Modelos Animais de Doenças , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Amidas/farmacocinética , Animais , COVID-19/virologia , Catepsina L/antagonistas & inibidores , Linhagem Celular , Cricetinae , Inibidores de Cisteína Proteinase/farmacocinética , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Mesocricetus/virologia , Reprodutibilidade dos Testes , SARS-CoV-2/crescimento & desenvolvimento , Serina Endopeptidases , Especificidade por Substrato , Replicação Viral/efeitos dos fármacos
7.
PLoS Pathog ; 14(2): e1006889, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29425244

RESUMO

Paramyxoviruses represent a family of RNA viruses causing significant human diseases. These include measles virus, the most infectious virus ever reported, in addition to parainfluenza virus, and other emerging viruses. Paramyxoviruses likely share common replication machinery but their mechanisms of RNA biosynthesis activities and details of their complex polymerase structures are unknown. Mechanistic and functional details of a paramyxovirus polymerase would have sweeping implications for understanding RNA virus replication and for the development of new antiviral medicines. To study paramyxovirus polymerase structure and function, we expressed an active recombinant Nipah virus (NiV) polymerase complex assembled from the multifunctional NiV L protein bound to its phosphoprotein cofactor. NiV is an emerging highly pathogenic virus that causes severe encephalitis and has been declared a global public health concern due to its high mortality rate. Using negative-stain electron microscopy, we demonstrated NiV polymerase forms ring-like particles resembling related RNA polymerases. We identified conserved sequence elements driving recognition of the 3'-terminal genomic promoter by NiV polymerase, and leading to initiation of RNA synthesis, primer extension, and transition to elongation mode. Polyadenylation resulting from NiV polymerase stuttering provides a mechanistic basis for transcription termination. It also suggests a divergent adaptation in promoter recognition between pneumo- and paramyxoviruses. The lack of available antiviral therapy for NiV prompted us to identify the triphosphate forms of R1479 and GS-5734, two clinically relevant nucleotide analogs, as substrates and inhibitors of NiV polymerase activity by delayed chain termination. Overall, these findings provide low-resolution structural details and the mechanism of an RNA polymerase from a previously uncharacterized virus family. This work illustrates important functional differences yet remarkable similarities between the polymerases of nonsegmented negative-strand RNA viruses.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Vírus Nipah/genética , Fosfoproteínas/metabolismo , Elongação da Transcrição Genética , Iniciação da Transcrição Genética , Terminação da Transcrição Genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Vírus Nipah/enzimologia , Paramyxovirinae/enzimologia , Paramyxovirinae/genética , Paramyxovirinae/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
8.
PLoS Pathog ; 11(6): e1004995, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26098424

RESUMO

Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112. ALS-8176 inhibited RSV replication in non-human primates, while ALS-8112 inhibited all strains of RSV in vitro and was specific for paramyxoviruses and rhabdoviruses. The antiviral effect of ALS-8112 was mediated by the intracellular formation of its 5'-triphosphate metabolite (ALS-8112-TP) inhibiting the viral RNA polymerase. ALS-8112 selected for resistance-associated mutations within the region of the L gene of RSV encoding the RNA polymerase. In biochemical assays, ALS-8112-TP was efficiently recognized by the recombinant RSV polymerase complex, causing chain termination of RNA synthesis. ALS-8112-TP did not inhibit polymerases from host or viruses unrelated to RSV such as hepatitis C virus (HCV), whereas structurally related molecules displayed dual RSV/HCV inhibition. The combination of molecular modeling and enzymatic analysis showed that both the 2'F and the 4'ClCH2 groups contributed to the selectivity of ALS-8112-TP. The lack of antiviral effect of ALS-8112-TP against HCV polymerase was caused by Asn291 that is well-conserved within positive-strand RNA viruses. This represents the first comparative study employing recombinant RSV and HCV polymerases to define the selectivity of clinically relevant nucleotide analogs. Understanding nucleotide selectivity towards distant viral RNA polymerases could not only be used to repurpose existing drugs against new viral infections, but also to design novel molecules.


Assuntos
Antivirais/farmacologia , Citidina Trifosfato/análogos & derivados , Citidina Trifosfato/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Humanos , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais/genética
9.
Nucleic Acids Res ; 43(1): 446-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25520198

RESUMO

The replication enzyme of RNA viruses must preferentially recognize their RNAs in an environment that contains an abundance of cellular RNAs. The factors responsible for specific RNA recognition are not well understood, in part because viral RNA synthesis takes place within enzyme complexes associated with modified cellular membrane compartments. Recombinant RNA-dependent RNA polymerases (RdRps) from the human norovirus and the murine norovirus (MNV) were found to preferentially recognize RNA segments that contain the promoter and a short template sequence for subgenomic RNA synthesis. Both the promoter and template sequence contribute to stable RdRp binding, accurate initiation of the subgenomic RNAs and efficient RNA synthesis. Using a method that combines RNA crosslinking and mass spectrometry, residues near the template channel of the MNV RdRp were found to contact the hairpin RNA motif. Mutations in the hairpin contact site in the MNV RdRp reduced MNV replication and virus production in cells. This work demonstrates that the specific recognition of the norovirus subgenomic promoter is through binding by the viral RdRp.


Assuntos
Norovirus/enzimologia , Norovirus/genética , Regiões Promotoras Genéticas , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Genoma Viral , Camundongos , Mutação , Ligação Proteica , Elementos Reguladores de Transcrição , Iniciação da Transcrição Genética
10.
Antimicrob Agents Chemother ; 59(12): 7504-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26392512

RESUMO

Norovirus (NoV) is a positive-sense single-stranded RNA virus that causes acute gastroenteritis and is responsible for 200,000 deaths per year worldwide. No effective vaccine or treatment is available. Recent studies have shown that the nucleoside analogs favipiravir (T-705) and 2'-C-methyl-cytidine (2CM-C) inhibit NoV replication in vitro and in animal models, but their precise mechanism of action is unknown. We evaluated the molecular interactions between nucleoside triphosphates and NoV RNA-dependent RNA polymerase (NoVpol), the enzyme responsible for replication and transcription of NoV genomic RNA. We found that T-705 ribonucleoside triphosphate (RTP) and 2CM-C triphosphate (2CM-CTP) equally inhibited human and mouse NoVpol activities at concentrations resulting in 50% of maximum inhibition (IC50s) in the low micromolar range. 2CM-CTP inhibited the viral polymerases by competing directly with natural CTP during primer elongation, whereas T-705 RTP competed mostly with ATP and GTP at the initiation and elongation steps. Incorporation of 2CM-CTP into viral RNA blocked subsequent RNA synthesis, whereas T-705 RTP did not cause immediate chain termination of NoVpol. 2CM-CTP and T-705 RTP displayed low levels of enzyme selectivity, as they were both recognized as substrates by human mitochondrial RNA polymerase. The level of discrimination by the human enzyme was increased with a novel analog of T-705 RTP containing a 2'-C-methyl substitution. Collectively, our data suggest that 2CM-C inhibits replication of NoV by acting as a classic chain terminator, while T-705 may inhibit the virus by multiple mechanisms of action. Understanding the precise mechanism of action of anti-NoV compounds could provide a rational basis for optimizing their inhibition potencies and selectivities.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Citidina/análogos & derivados , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Pirazinas/farmacologia , Ribonucleotídeos/farmacologia , Proteínas Virais/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Citidina/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Viral da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Especificidade de Hospedeiro , Humanos , Cinética , Camundongos , Norovirus/efeitos dos fármacos , Norovirus/enzimologia , Norovirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
11.
Antimicrob Agents Chemother ; 58(7): 3636-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24733478

RESUMO

Ribonucleotide analog inhibitors of the RNA-dependent RNA polymerase of hepatitis C virus (HCV) represent one of the most exciting recent developments in HCV antiviral therapy. Although it is well established that these molecules cause chain termination by competing at the triphosphate level with natural nucleotides for incorporation into elongating RNA, strategies to rationally optimize antiviral potency based on enzyme kinetics remain elusive. In this study, we used the isolated HCV polymerase elongation complex to determine the pre-steady-state kinetics of incorporation of 2'F-2'C-Me-UTP, the active metabolite of the anti-HCV drug sofosbuvir. 2'F-2'C-Me-UTP was efficiently incorporated by HCV polymerase with apparent Kd (equilibrium constant) and kpol (rate of nucleotide incorporation at saturating nucleotide concentration) values of 113 ± 28 µM and 0.67 ± 0.05 s(-1), respectively, giving an overall substrate efficiency (kpol/Kd) of 0.0059 ± 0.0015 µM(-1) s(-1). We also measured the substrate efficiency of other UTP analogs and found that substitutions at the 2' position on the ribose can greatly affect their level of incorporation, with a rank order of OH > F > NH2 > F-C-Me > C-Me > N3 > ara. However, the efficiency of chain termination following the incorporation of UMP analogs followed a different order, with only 2'F-2'C-Me-, 2'C-Me-, and 2'ara-UTP causing complete and immediate chain termination. The chain termination profile of the 2'-modified nucleotides explains the apparent lack of correlation observed across all molecules between substrate efficiency at the single-nucleotide level and their overall inhibition potency. To our knowledge, these results provide the first attempt to use pre-steady-state kinetics to uncover the mechanism of action of 2'-modified NTP analogs against HCV polymerase.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/farmacologia , Algoritmos , Guanosina Trifosfato/metabolismo , Humanos , Cinética
12.
Virologie (Montrouge) ; 18(3): 136-150, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065848

RESUMO

In single-stranded RNA viruses, the initiation of RNA synthesis by the viral polymerases is a key step to the replication and transcription of the genetic material. RNA-dependent RNA polymerases (RdRps) have evolved independently for each virus family to recognize the 3'-end of viral genomes, maintain the integrity and the functionality of copied RNA, and to evade the recognition of foreign nucleic acid by host innate immune response. A better understanding of the underlying mechanisms governing the enzymatic activities involved in RNA initiation has enabled the discovery of small molecule inhibitors that can block virus replication and can be developed for therapeutic application. In this review, we present examples of such mechanisms for three unrelated single-stranded RNA virus families. In the first case, we show how blocking a conformation change of hepatitis C virus polymerase prevents the formation of the elongation complex. The second example describes inhibitors of the cap formation in Mononegavirales. In the third case, the inhibition of the endonuclease activity of the PA protein prevents the cap-snatching step of viral transcription by the RNA polymerase of Orthomyxoviruses.

13.
Antiviral Res ; 227: 105907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772503

RESUMO

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/virologia , Animais , Humanos , Replicação Viral/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Ovinos , Farmacorresistência Viral , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteínas Virais/genética , Pulmão/virologia
14.
Antiviral Res ; 211: 105521, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596323

RESUMO

The 35th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held in Seattle, Washington, USA, on March 21-25, 2022 and concurrently through an interactive remote meeting platform. This report gives an overview of the conference on behalf of the society. It provides a general review of the meeting and awardees, summarizing the presentations and their main conclusions from the perspective of researchers active in many different areas of antiviral research and development. Through ICAR, leaders in the field of antiviral research were able to showcase their efforts, as participants learned about key advances in the field. The impact of these efforts was exemplified by many presentations on SARS-CoV-2 demonstrating the remarkable response to the ongoing pandemic, as well as future pandemic preparedness, by members of the antiviral research community. As we address ongoing outbreaks and seek to mitigate those in the future, this meeting continues to support outstanding opportunities for the exchange of knowledge and expertise while fostering cross-disciplinary collaborations in therapeutic and vaccine development. The 36th ICAR will be held in Lyon, France, March 13-17, 2023.


Assuntos
Antivirais , COVID-19 , Humanos , Antivirais/uso terapêutico , Washington , Complexo Ferro-Dextran , SARS-CoV-2
15.
mBio ; 14(1): e0281522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625640

RESUMO

The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in vitro in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program. We identified a combination of amino acid substitutions in 3CLpro (L50F E166A L167F) that is associated with a >20× increase in 50% effective concentration (EC50) values for ALG-097161, nirmatrelvir (PF-07321332), PF-00835231, and ensitrelvir. While two of the single substitutions (E166A and L167F) provide low-level resistance to the inhibitors in a biochemical assay, the triple mutant results in the highest levels of resistance (6× to 72×). All substitutions are associated with a significant loss of enzymatic 3CLpro activity, suggesting a reduction in viral fitness. Structural biology analysis indicates that the different substitutions reduce the number of inhibitor/enzyme interactions while the binding of the substrate is maintained. These observations will be important for the interpretation of resistance development to 3CLpro inhibitors in the clinical setting. IMPORTANCE Paxlovid is the first oral antiviral approved for treatment of SARS-CoV-2 infection. Antiviral treatments are often associated with the development of drug-resistant viruses. In order to guide the use of novel antivirals, it is essential to understand the risk of resistance development and to characterize the associated changes in the viral genes and proteins. In this work, we describe for the first time a pathway that allows SARS-CoV-2 to develop resistance against Paxlovid in vitro. The characteristics of in vitro antiviral resistance development may be predictive for the clinical situation. Therefore, our work will be important for the management of COVID-19 with Paxlovid and next-generation SARS-CoV-2 3CLpro inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Inibidores Enzimáticos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/genética
16.
J Biol Chem ; 286(3): 2067-77, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21078673

RESUMO

Dengue virus (DENV) infects 50-100 million people worldwide per year, causing severe public health problems. DENV RNA-dependent RNA polymerase, an attractive target for drug development, catalyzes de novo replication of the viral genome in three phases: initiation, transition, and elongation. The aim of this work was to characterize the mechanism of nucleotide addition catalyzed by the polymerase domain of DENV serotype 2 during elongation using transient kinetic methods. We measured the kinetics of formation of the elongation complex containing the polymerase and a double-stranded RNA by preincubation experiments. The elongation complex assembly is slow, following a one-step binding mechanism with an association rate of 0.0016 ± 0.0001 µM(-1) s(-1) and a dissociation rate of 0.00020 ± 0.00005 s(-1) at 37 °C. The elongation complex assembly is 6 times slower at 30 °C and requires Mg(2+) during preincubation. The assembled elongation complex incorporates a correct nucleotide, GTP, to the primer with a K(d) of 275 ± 52 µM and k(pol) of 18 ± 1 s(-1). The fidelity of the polymerase is 1/34,000, 1/59,000, 1/135,000 for misincorporation of UTP, ATP, and CTP opposite CMP in the template, respectively. The fidelity of DENV polymerase is comparable with HIV reverse transcriptase and the poliovirus polymerase. This work reports the first description of presteady-state kinetics and fidelity for an RNA-dependent RNA polymerase from the Flaviviridae family.


Assuntos
Vírus da Dengue/enzimologia , RNA de Cadeia Dupla/química , RNA Viral/química , RNA Polimerase Dependente de RNA/química , Vírus da Dengue/genética , Genoma Viral/fisiologia , HIV/enzimologia , HIV/genética , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Cinética , Nucleotídeos/química , Nucleotídeos/metabolismo , RNA de Cadeia Dupla/biossíntese , RNA de Cadeia Dupla/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/fisiologia
17.
Antimicrob Agents Chemother ; 56(2): 830-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22143520

RESUMO

Filibuvir and VX-222 are nonnucleoside inhibitors (NNIs) that bind to the thumb II allosteric pocket of the hepatitis C virus (HCV) RNA-dependent RNA polymerase. Both compounds have shown significant promise in clinical trials and, therefore, it is relevant to better understand their mechanisms of inhibition. In our study, filibuvir and VX-222 inhibited the 1b/Con1 HCV subgenomic replicon, with 50% effective concentrations (EC(50)s) of 70 nM and 5 nM, respectively. Using several RNA templates in biochemical assays, we found that both compounds preferentially inhibited primer-dependent RNA synthesis but had either no or only modest effects on de novo-initiated RNA synthesis. Filibuvir and VX-222 bind to the HCV polymerase with dissociation constants of 29 and 17 nM, respectively. Three potential resistance mutations in the thumb II pocket were analyzed for effects on inhibition by the two compounds. The M423T substitution in the RNA polymerase was at least 100-fold more resistant to filibuvir in the subgenomic replicon and in the enzymatic assays. This resistance was the result of a 250-fold loss in the binding affinity (K(d)) of the mutated enzyme to filibuvir. In contrast, the inhibitory activity of VX-222 was only modestly affected by the M423T substitution but more significantly affected by an I482L substitution.


Assuntos
Antivirais/farmacologia , Cicloexanóis/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Pironas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Tiofenos/farmacologia , Triazóis/farmacologia , Antivirais/metabolismo , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Cicloexanóis/metabolismo , Farmacorresistência Viral , Inibidores Enzimáticos/metabolismo , Hepacivirus/enzimologia , Humanos , Modelos Moleculares , Mutação/efeitos dos fármacos , Pironas/química , Pironas/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Replicon/efeitos dos fármacos , Moldes Genéticos , Tiofenos/metabolismo , Triazóis/química , Triazóis/metabolismo
18.
Antivir Chem Chemother ; 30: 20402066221130853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36305015

RESUMO

As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development. The meeting resulted in a dynamic and effective exchange of ideas and information, positively impacting the prompt progress towards new and effective prophylaxis and therapeutics.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Pandemias
19.
Curr Opin Virol ; 49: 36-40, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029993

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. The coronavirus 3-chymotrypsin-like protease (3CLpro) controls virus replication and is therefore considered a major target and promising opportunity for rational-based antiviral discovery with direct acting agents. Here we review first-generation SARS-CoV-2 3CLpro inhibitors PF-07304814, GC-376, and CDI-45205 that are being delivered either by injection or inhalation due to their low intrinsic oral bioavailability. In addition, PF-07321332 is now emerging as a promising second-generation clinical candidate for oral delivery. A key challenge to the development of novel 3CLpro inhibitors is the poor understanding of the predictive value of in vitro potency toward clinical efficacy, an issue complicated by the involvement of host proteases in virus entry. Further preclinical and clinical validation will be key to establishing 3CLpro inhibitors as a bona fide class for future SARS-CoV-2 therapeutics for both hospitalized and outpatient populations.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/uso terapêutico , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/uso terapêutico , Vias de Administração de Medicamentos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , SARS-CoV-2/enzimologia
20.
SLAS Discov ; 26(6): 766-774, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33870746

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for NSP14 ExoN activity. The assay was used to measure NSP14 activity and gain insight into substrate specificity and the reaction mechanism. Next, the assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z factor > 0.8) and a significant assay window (signal-to-background ratio > 200). Screening 10,240 small molecules from a diverse library revealed candidate inhibitors, which were counterscreened for NSP14 selectivity and RNA intercalation. The assay methodology described here will enable, for the first time, a label-free and high-throughput assay for NSP14 ExoN activity to accelerate drug discovery efforts and, due to the assay flexibility, can be more broadly applicable for measuring other enzyme activities from other viruses or implicated in various pathologies.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Exonucleases/antagonistas & inibidores , Exorribonucleases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , COVID-19/virologia , Clonagem Molecular , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA