Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Phys Chem ; 72: 423-443, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33481640

RESUMO

Because plasmonic metal nanostructures combine strong light absorption with catalytically active surfaces, they have become platforms for the light-assisted catalysis of chemical reactions. The enhancement of reaction rates by plasmonic excitation has been extensively discussed. This review focuses on a less discussed aspect: the induction of new reaction pathways by light excitation. Through commentary on seminal reports, we describe the principles behind the optical modulation of chemical reactivity and selectivity on plasmonic metal nanostructures. Central to these phenomena are excited charge carriers generated by plasmonic excitation, which modify the energy landscape available to surface reactive species and unlock pathways not conventionally available in thermal catalysis. Photogenerated carriers can trigger bond dissociation or desorption in an adsorbate-selective manner, drive charge transfer and multielectron redox reactions, and generate radical intermediates. Through one or more of these mechanisms, a specific pathway becomes favored under light. By improved control over these mechanisms, light-assisted catalysis can be transformational for chemical synthesis and energy conversion.

2.
Chem Soc Rev ; 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32700702

RESUMO

Single-molecule-level measurements are bringing about a revolution in our understanding of chemical and biochemical processes. Conventional measurements are performed on large ensembles of molecules. Such ensemble-averaged measurements mask molecular-level dynamics and static and dynamic fluctuations in reactivity, which are vital to a holistic understanding of chemical reactions. Watching reactions on the single-molecule level provides access to this otherwise hidden information. Sub-diffraction-limited spatial resolution fluorescence imaging methods, which have been successful in the field of biophysics, have been applied to study chemical processes on single-nanoparticle and single-molecule levels, bringing us new mechanistic insights into physiochemical processes. However, the scope of chemical processes that can be studied using fluorescence imaging is considerably limited; the chemical reaction has to be designed such that it involves fluorophores or fluorogenic probes. In this article, we review optical imaging modalities alternative to fluorescence imaging, which expand greatly the range of chemical processes that can be probed with nanoscale or even single-molecule resolution. First, we show that the luminosity, wavelength, and intermittency of solid-state photoluminescence (PL) can be used to probe chemical transformations on the single-nanoparticle-level. Next, we highlight case studies where localized surface plasmon resonance (LSPR) scattering is used for tracking solid-state, interfacial, and near-field-driven chemical reactions occurring in individual nanoscale locations. Third, we explore the utility of surface- and tip-enhanced Raman scattering to monitor individual bond-dissociation and bond-formation events occurring locally in chemical reactions on surfaces. Each example has yielded some new understanding about molecular mechanisms or location-to-location heterogeneity in chemical activity. The review finishes with new and complementary tools that are expected to further enhance the scope of knowledge attainable through nanometer-scale resolution chemical imaging.

3.
Nat Commun ; 12(1): 2612, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972538

RESUMO

The understanding and rational design of heterogeneous catalysts for complex reactions, such as CO2 reduction, requires knowledge of elementary steps and chemical species prevalent on the catalyst surface under operating conditions. Using in situ nanoscale surface-enhanced Raman scattering, we probe the surface of a Ag nanoparticle during plasmon-excitation-driven CO2 reduction in water. Enabled by the high spatiotemporal resolution and surface sensitivity of our method, we detect a rich array of C1-C4 species formed on the photocatalytically active surface. The abundance of multi-carbon compounds, such as butanol, suggests the favorability of kinetically challenging C-C coupling on the photoexcited Ag surface. Another advance of this work is the use of isotope labeling in nanoscale probing, which allows confirmation that detected species are the intermediates and products of the catalytic reaction rather than spurious contaminants. The surface chemical knowledge made accessible by our approach will inform the modeling and engineering of catalysts.

4.
ACS Nano ; 12(8): 8330-8340, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30089207

RESUMO

Photocatalytic reduction of carbon dioxide (CO2) by visible light has the potential to mimic plant photosynthesis and facilitate the renewable production of storable fuels. Accomplishing desirable efficiency and selectivity in artificial photosynthesis requires an understanding of light-driven pathways on photocatalyst surfaces. Here, we probe with single-nanoparticle spatial resolution the dynamics of a plasmonic silver (Ag) photocatalyst under conditions of visible light-driven CO2 reduction. In situ surface-enhanced Raman spectroscopy captures discrete adsorbates and products formed dynamically on single photocatalytic nanoparticles, most prominent among which is a surface-adsorbed hydrocarboxyl (HOCO*) intermediate critical to further reduction of CO2 to carbon monoxide (CO) and formic acid (HCOOH). Density functional theory simulations of the captured adsorbates reveal the mechanism by which plasmonic excitation activates physisorbed CO2 leading to the formation of HOCO*, indicating close interplay between photoexcited states and adsorbate/metal interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA