Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Photonics ; 11(1): 42-52, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249683

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has had a tremendous impact on humanity. Prevention of transmission by disinfection of surfaces and aerosols through a chemical-free method is highly desirable. Ultraviolet C (UVC) light is uniquely positioned to achieve inactivation of pathogens. We report the inactivation of SARS-CoV-2 virus by UVC radiation and explore its mechanisms. A dose of 50 mJ/cm2 using a UVC laser at 266 nm achieved an inactivation efficiency of 99.89%, while infectious virions were undetectable at 75 mJ/cm2 indicating >99.99% inactivation. Infection by SARS-CoV-2 involves viral entry mediated by the spike glycoprotein (S), and viral reproduction, reliant on translation of its genome. We demonstrate that UVC radiation damages ribonucleic acid (RNA) and provide in-depth characterization of UVC-induced damage of the S protein. We find that UVC severely impacts SARS-CoV- 2 spike protein's ability to bind human angiotensin-converting enzyme 2 (hACE2) and this correlates with loss of native protein conformation and aromatic amino acid integrity. This report has important implications for the design and development of rapid and effective disinfection systems against the SARS-CoV-2 virus and other pathogens.

2.
RSC Adv ; 11(15): 8899-8915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381596

RESUMO

Tauopathies are a group of disorders in which the deposition of abnormally folded tau protein accompanies neurodegeneration. The development of methods for detection and classification of pathological changes in protein conformation are desirable for understanding the factors that influence the structural polymorphism of aggregates in tauopathies. We have previously demonstrated the utility of Raman spectroscopy for the characterization and discrimination of different protein aggregates, including tau, based on their unique conformational signatures. Building on this, in the present study, we assess the utility of Raman spectroscopy for characterizing and distinguishing different conformers of the same protein which in the case of tau are unique tau strains generated in vitro. We now investigate the impact of aggregation environment, cofactors, post-translational modification and primary sequence on the Raman fingerprint of tau fibrils. Using quantitative conformational fingerprinting and multivariate statistical analysis, we found that the aggregation of tau in different buffer conditions resulted in the formation of distinct fibril strains. Unique spectral markers were identified for tau fibrils generated using heparin or RNA cofactors, as well as for phosphorylated tau. We also determined that the primary sequence of the tau monomer influenced the conformational signature of the resulting tau fibril, including 2N4R, 0N3R, K18 and P301S tau variants. These results highlight the conformational polymorphism of tau fibrils, which is reflected in the wide range of associated neurological disorders. Furthermore, the analyses presented in this study provide a benchmark for the Raman spectroscopic characterization of tau strains, which may shed light on how the aggregation environment, cofactors and post-translational modifications influence tau conformation in vivo in future studies.

3.
Biomed Opt Express ; 11(8): 4714-4722, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923073

RESUMO

Specific proteins and their aggregates form toxic amyloid plaques and neurofibrillary tangles in the brains of people suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's. It is important to study these conformational changes to identify and differentiate these diseases at an early stage so that timely medication is provided to patients. Mid-infrared spectroscopy can be used to monitor these changes by studying the line-shapes and the relative absorbances of amide bands present in proteins. This work focusses on the spectroscopy of the protein, Bovine Serum Albumin as an exemplar, and its aggregates using germanium on silicon waveguides in the 1900-1000 cm-1 (5.3-10.0 µm) spectral region.

4.
ACS Chem Neurosci ; 10(11): 4593-4611, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31661242

RESUMO

Aggregation is a pathological hallmark of proteinopathies such as Alzheimer's disease and results in the deposition of ß-sheet-rich amyloidogenic protein aggregates. Such proteinopathies can be classified by the identity of one or more aggregated proteins, with recent evidence also suggesting that distinct molecular conformers (strains) of the same protein can be observed in different diseases, as well is in subtypes of the same disease. Therefore, methods for the quantification of pathological changes in protein conformation are central to understanding and treating proteinopathies. In this work, the evolution of Raman spectroscopic molecular signatures of three conformationally distinct proteins, bovine serum albumin (α-helical-rich), ß2-microglobulin (ß-sheet-rich), and tau (natively disordered), was assessed during aggregation into oligomers and fibrils. The morphological evolution was tracked using atomic force microscopy and corresponding conformational changes were assessed by their Raman signatures acquired in both wet and dried conditions. A deconvolution model was developed which allowed us to quantify the conformation of the nonregular protein tau, as well as for the oligomeric and fibrillar species of each of the proteins. Principle component analysis of the fingerprint region allowed further identification of the distinguishing spectral features and unsupervised distinction. While an increase in ß-sheet is seen on aggregation, crucially, however, each protein also retains a significant proportion of its native monomeric structure after aggregation. Thus, spectral analysis of each aggregated species, oligomeric, as well as fibrillar, for each protein resulted in a unique and quantitative "conformational fingerprint". This approach allowed us to provide the first differential detection of both oligomers and fibrils of the three different amyloidogenic proteins, including tau, whose aggregates have never before been interrogated using spontaneous Raman spectroscopy. Quantitative "conformational fingerprinting" by Raman spectroscopy thus demonstrates its huge potential and utility in understanding proteinopathic disease mechanisms and for providing strain-specific early diagnostic markers and targets for disease-modifying therapies.


Assuntos
Proteínas Amiloidogênicas/análise , Proteínas Amiloidogênicas/química , Evolução Molecular , Agregados Proteicos/fisiologia , Proteínas tau/análise , Proteínas tau/química , Proteínas Amiloidogênicas/metabolismo , Animais , Análise de Componente Principal/métodos , Conformação Proteica , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Análise Espectral Raman/métodos , Proteínas tau/metabolismo
5.
ACS Chem Neurosci ; 9(3): 404-420, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29308873

RESUMO

The pathogenesis underlining many neurodegenerative diseases remains incompletely understood. The lack of effective biomarkers and disease preventative medicine demands the development of new techniques to efficiently probe the mechanisms of disease and to detect early biomarkers predictive of disease onset. Raman spectroscopy is an established technique that allows the label-free fingerprinting and imaging of molecules based on their chemical constitution and structure. While analysis of isolated biological molecules has been widespread in the chemical community, applications of Raman spectroscopy to study clinically relevant biological species, disease pathogenesis, and diagnosis have been rapidly increasing since the past decade. The growing number of biomedical applications has shown the potential of Raman spectroscopy for detection of novel biomarkers that could enable the rapid and accurate screening of disease susceptibility and onset. Here we provide an overview of Raman spectroscopy and related techniques and their application to neurodegenerative diseases. We further discuss their potential utility in research, biomarker detection, and diagnosis. Challenges to routine use of Raman spectroscopy in the context of neuroscience research are also presented.


Assuntos
Biomarcadores/análise , Doenças Neurodegenerativas/diagnóstico por imagem , Análise Espectral Raman , Análise Espectral , Animais , Humanos , Microscopia , Pesquisa , Análise Espectral/métodos , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA