RESUMO
South Asia is home to almost a quarter of the world's total population and is home to significant ethnolinguistic diversity. Previous studies of linguistic and genetic affiliations of Indian populations suggest that the formation of these distinct groups was a protracted and complex phenomenon involving multiple waves of migration, cultural assimilation, and genetic admixture. The evolutionary processes of migration, mixing and merging of populations thus impact the culture and linguistic diversity of different groups, some of which may retain their linguistic affinities despite genetic admixture with other groups, or vice versa. Our study examines the relationship of genetic and linguistic affinities between Austroasiatic and Indo-European speakers in adjacent geographical regions of Eastern India. We analyzed 224 mitogenomes and 0.65 million SNP genotypes from 40 unrelated individuals belonging to the Bathudi, Bhumij, Ho, and Mahali ethnic groups from the Eastern Indian state of Odisha. These four groups are speakers of Austroasiatic languages who have adopted elements from Indo-European languages spoken in neighbouring regions. Our results suggest that these groups have the greatest maternal genetic affinity with other Austroasiatic-speaking groups in India. Allele frequency-based analyses, genome-wide SNPs, haplotype-based methods and IBD sharing further support the genetic similarity of these East Indian groups to Austroasiatic speakers of South Asia rather than regional populations speaking Indo-European and Dravidian languages. Our study shows that these populations experienced linguistic mixing, likely due to industrialization and modernization that brought them into close cultural contact with neighbouring Indo-European-speaking groups. However, linguistic change in these groups is not reflected in genetic mixing in these populations, as they appear to maintain strict genetic boundaries while simultaneously experiencing cultural mixing.
RESUMO
Our understanding of the genetics of skin pigmentation has been largely skewed towards populations of European ancestry, imparting less attention to South Asian populations, who behold huge pigmentation diversity. Here, we investigate skin pigmentation variation in a cohort of 1,167 individuals in the Middle Gangetic Plain of the Indian subcontinent. Our data confirm the association of rs1426654 with skin pigmentation among South Asians, consistent with previous studies, and also show association for rs2470102 single nucleotide polymorphism. Our haplotype analyses further help us delineate the haplotype distribution across social categories and skin color. Taken together, our findings suggest that the social structure defined by the caste system in India has a profound influence on the skin pigmentation patterns of the subcontinent. In particular, social category and associated single nucleotide polymorphisms explain about 32% and 6.4%, respectively, of the total phenotypic variance. Phylogeography of the associated single nucleotide polymorphisms studied across 52 diverse populations of the Indian subcontinent shows wide presence of the derived alleles, although their frequencies vary across populations. Our results show that both polymorphisms (rs1426654 and rs2470102) play an important role in the skin pigmentation diversity of South Asians.
Assuntos
Polimorfismo de Nucleotídeo Único , Pigmentação da Pele/genética , Adolescente , Adulto , Idoso , Antiporters/genética , Povo Asiático/genética , Criança , Estudos de Coortes , Feminino , Frequência do Gene , Estudos de Associação Genética , Geografia , Haplótipos , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Fenótipo , Filogeografia , Análise de Sequência de DNA , Classe Social , Adulto JovemRESUMO
BACKGROUND: Visceral leishmaniasis (VL) is a multifactorial disease, where the host genetics play a significant role in determining the disease outcome. The immunological role of anti-inflammatory cytokine, Interleukin 10 (IL10), has been well-documented in parasite infections and considered as a key regulatory cytokine for VL. Although VL patients in India display high level of IL10 in blood serum, no genetic study has been conducted to assess the VL susceptibility / resistance. Therefore, the aim of this study is to investigate the role of IL10 variations in Indian VL; and to estimate the distribution of disease associated allele in diverse Indian populations. METHODOLOGY: All the exons and exon-intron boundaries of IL10 were sequenced in 184 VL patients along with 172 ethnically matched controls from VL endemic region of India. RESULT AND DISCUSSION: Our analysis revealed four variations; rs1518111 (2195 A>G, intron), rs1554286 (2607 C>T, intron), rs3024496 (4976 T>C, 3' UTR) and rs3024498 (5311 A>G, 3' UTR). Of these, a variant g.5311A is significantly associated with VL (χ2=18.87; p =0.00001). In silico approaches have shown that a putative micro RNA binding site (miR-4321) is lost in rs3024498 mRNA. Further, analysis of the above four variations in 1138 individuals from 34 ethnic populations, representing different social and linguistic groups who are inhabited in different geographical regions of India, showed variable frequency. Interestingly, we have found, majority of the tribal populations have low frequency of VL ('A' of rs3024498); and high frequency of leprosy ('T' of rs1554286), and Behcet's ('A' of rs1518111) associated alleles, whereas these were vice versa in castes. Our findings suggest that majority of tribal populations of India carry the protected / less severe allele against VL, while risk / more severe allele for leprosy and Behcet's disease. This study has potential implications in counseling and management of VL and other infectious diseases.