Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glob Chang Biol ; 29(20): 5788-5801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306048

RESUMO

Human activity and associated landscape modifications alter the movements of animals with consequences for populations and ecosystems worldwide. Species performing long-distance movements are thought to be particularly sensitive to human impact. Despite the increasing anthropogenic pressure, it remains challenging to understand and predict animals' responses to human activity. Here we address this knowledge gap using 1206 Global Positioning System movement trajectories of 815 individuals from 14 red deer (Cervus elaphus) and 14 elk (Cervus canadensis) populations spanning wide environmental gradients, namely the latitudinal range from the Alps to Scandinavia in Europe, and the Greater Yellowstone Ecosystem in North America. We measured individual-level movements relative to the environmental context, or movement expression, using the standardized metric Intensity of Use, reflecting both the directionality and extent of movements. We expected movement expression to be affected by resource (Normalized Difference Vegetation Index, NDVI) predictability and topography, but those factors to be superseded by human impact. Red deer and elk movement expression varied along a continuum, from highly segmented trajectories over relatively small areas (high intensity of use), to directed transitions through restricted corridors (low intensity of use). Human activity (Human Footprint Index, HFI) was the strongest driver of movement expression, with a steep increase in Intensity of Use as HFI increased, but only until a threshold was reached. After exceeding this level of impact, the Intensity of Use remained unchanged. These results indicate the overall sensitivity of Cervus movement expression to human activity and suggest a limitation of plastic responses under high human pressure, despite the species also occurring in human-dominated landscapes. Our work represents the first comparison of metric-based movement expression across widely distributed populations of a deer genus, contributing to the understanding and prediction of animals' responses to human activity.


Assuntos
Cervos , Ecossistema , Humanos , Animais , Cervos/fisiologia , Atividades Humanas , América do Norte , Sistemas de Informação Geográfica
2.
J Anim Ecol ; 92(4): 889-900, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36757108

RESUMO

Large carnivores are recovering in many landscapes where the human footprint is simultaneously growing. When carnivores encounter humans, the way they behave often changes, which may subsequently influence how they affect their prey. However, little research investigates the behavioural mechanisms underpinning carnivore response to humans. As a result, it is not clear how predator-prey interactions and their associated ecosystem processes will play out in the human-dominated areas into which carnivore populations are increasingly expanding. We hypothesized that humans would reduce predation risk for prey by disturbing carnivores or threatening their survival. Alternatively, or additionally, we hypothesized that humans would increase predation risk by providing forage resources that congregate herbivorous prey in predictable places and times. Using grey wolves Canis lupus in Jackson Hole, Wyoming, USA as a study species, we investigated 170 kill sites across a spectrum of human influences ranging from heavily restricted human activities on protected federal lands to largely unregulated activities on private lands. Then, we used conditional logistic regression to quantify how the probability of predation changed across varied types and amounts of human influences, while controlling for environmental characteristics and prey availability. Wolves primarily made kills in environmental terrain traps and where prey availability was high, but predation risk was significantly better explained with the inclusion of human influences than by environmental characteristics alone. Different human influences had different, and even converse, effects on the risk of wolf predation. For example, where prey were readily available, wolves preferentially killed animals far from motorized roads but close to unpaved trails. However, wolves responded less strongly to humans, if at all, where prey were scarce, suggesting they prioritized acquiring prey over avoiding human interactions. Overall, our work reveals that the effects of large carnivores on prey populations can vary considerably among different types of human influences, yet carnivores may not appreciably alter predatory behaviour in response to humans if prey are difficult to obtain. These results shed new light on the drivers of large carnivore behaviour in anthropogenic areas while improving understanding of predator-prey dynamics in and around the wildland-urban interface.


Assuntos
Carnívoros , Cervos , Lobos , Humanos , Animais , Ecossistema , Cervos/fisiologia , Lobos/fisiologia , Carnívoros/fisiologia , Comportamento Predatório/fisiologia
3.
Am J Bot ; 109(11): 1875-1892, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063430

RESUMO

PREMISE: In the absence of hawkmoth pollinators, chasmogamous (CH) flowers of Ruellia humilis self-pollinate by two secondary mechanisms. Other floral visitors might exert selection on CH floral traits to restore outcrossing, but at the same time preferential predation of CH seeds generates selection to increase the allocation of resources to cleistogamous (CL) flowers. METHODS: To assess the potential for an evolutionary response to these competing selection pressures, we estimated additive genetic variances ( σ A 2 ${\sigma }_{{\rm{A}}}^{2}$ ) and covariances for 14 reproductive traits and three fitness components in a Missouri population lacking hawkmoth pollinators. RESULTS: We found significant σ A 2 ${\sigma }_{{\rm{A}}}^{2}$ for all 11 floral traits and two measures of resource allocation to CL flowers, indicating the potential for a short-term response to selection on most reproductive traits. Selection generated by seed predators is predicted to increase the percentage of CL flowers by 0.24% per generation, and mean stigma-anther separation is predicted to decrease as a correlated response, increasing the fraction of plants that engage in prior selfing. However, the initial response to this selection is opposed by strong directional dominance. CONCLUSIONS: The predicted evolutionary decrease in the number of CH flowers available for potential outcrossing, combined with the apparent preclusion of potential diurnal pollinators by the pollen-harvesting activities of sweat bees, suggest that 100% cleistogamy is the likely outcome of evolution in the absence of hawkmoths. However, rare mutations with large effects, such as delaying budbreak until after sunrise, could provide pathways for the restoration of outcrossing that are not reachable by gradual quantitative-genetic evolution.


Assuntos
Acanthaceae , Manduca , Abelhas , Animais , Polinização/fisiologia , Flores/genética , Pólen/genética , Acanthaceae/fisiologia , Reprodução
4.
Glob Chang Biol ; 25(7): 2368-2381, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30908766

RESUMO

Migration is an effective behavioral strategy for prolonging access to seasonal resources and may be a resilient strategy for ungulates experiencing changing climatic conditions. In the Greater Yellowstone Ecosystem (GYE), elk are the primary ungulate, with approximately 20,000 individuals migrating to exploit seasonal gradients in forage while also avoiding energetically costly snow conditions. How climate-induced changes in plant phenology and snow accumulation are influencing elk migration timing is unknown. We present the most complete record of elk migration across the GYE, spanning 9 herds and 414 individuals from 2001 to 2017, to evaluate the drivers of migration timing and test for temporal shifts. The timing of elk departure from winter range involved a trade-off between current and anticipated forage conditions, while snow melt governed summer range arrival date. Timing of elk departure from summer range and arrival on winter range were both influenced by snow accumulation and exposure to hunting. At the GYE scale, spring and fall migration timing changed through time, most notably with winter range arrival dates becoming almost 50 days later since 2001. Predicted herd-level changes in migration timing largely agreed with observed GYE-wide changes-except for predicted winter range arrival dates which did not reflect the magnitude of change detected in the elk telemetry data. Snow melt, snow accumulation, and spring green-up dates all changed through time, with different herds experiencing different rates and directions of change. We conclude that elk migration is plastic, is a direct response to environmental cues, and that these environmental cues are not changing in a consistent manner across the GYE. The impacts of changing elk migration timing on predator-prey dynamics, carnivore-livestock conflict, disease ecology, and harvest management across the GYE are likely to be significant and complex.


Assuntos
Cervos , Ecossistema , Migração Animal , Animais , Mudança Climática , Estações do Ano , Neve
5.
Mol Ecol ; 24(22): 5616-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26454263

RESUMO

The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole-genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50-fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long-term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male-male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa.


Assuntos
Genética Populacional , Preferência de Acasalamento Animal , Seleção Genética , Carneiro da Montanha/genética , Adaptação Biológica/genética , Animais , Cromossomos , Feminino , Deriva Genética , Variação Genética , Genômica , Cornos , Masculino , Montana , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Receptores Acoplados a Proteínas G/genética , Análise de Sequência de DNA , Wyoming , Cromossomo X
6.
Ecol Evol ; 9(15): 8829-8839, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31410283

RESUMO

Migration evolved as a behavior to enhance fitness through exploiting spatially and temporally variable resources and avoiding predation or other threats. Globally, landscape alterations have resulted in declines to migratory populations across taxa. Given the long time periods over which migrations evolved in native systems, it is unlikely that restored populations embody the same migratory complexity that existed before population reductions or regional extirpation.We used GPS location data collected from 209 female bighorn sheep (Ovis canadensis) to characterize population and individual migration patterns along elevation and geographic continuums for 18 populations of bighorn sheep with different management histories (i.e., restored, augmented, and native) across the western United States.Individuals with resident behaviors were present in all management histories. Elevational migrations were the most common population-level migratory behavior. There were notable differences in the degree of individual variation within a population across the three management histories. Relative to native populations, restored and augmented populations had less variation among individuals with respect to elevation and geographic migration distances. Differences in migratory behavior were most pronounced for geographic distances, where the majority of native populations had a range of variation that was 2-4 times greater than restored or augmented populations. Synthesis and applications. Migrations within native populations include a variety of patterns that translocation efforts have not been able to fully recreate within restored and augmented populations. Theoretical and empirical research has highlighted the benefits of migratory diversity in promoting resilience and population stability. Limited migratory diversity may serve as an additional factor limiting demographic performance and range expansion. We suggest preserving native systems with intact migratory portfolios and a more nuanced approach to restoration and augmentation in which source populations are identified based on a suite of criteria that includes matching migratory patterns of source populations with local landscape attributes.

7.
PLoS One ; 13(11): e0207780, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475861

RESUMO

Respiratory disease caused by Mycoplasma ovipneumoniae and Pasteurellaceae poses a formidable challenge for bighorn sheep (Ovis canadensis) conservation. All-age epizootics can cause 10-90% mortality and are typically followed by multiple years of enzootic disease in lambs that hinders post-epizootic recovery of populations. The relative frequencies at which these epizootics are caused by the introduction of novel pathogens or expression of historic pathogens that have become resident in the populations is unknown. Our primary objectives were to determine how commonly the pathogens associated with respiratory disease are hosted by bighorn sheep populations and assess demographic characteristics of populations with respect to the presence of different pathogens. We sampled 22 bighorn sheep populations across Montana and Wyoming, USA for Mycoplasma ovipneumoniae and Pasteurellaceae and used data from management agencies to characterize the disease history and demographics of these populations. We tested for associations between lamb:ewe ratios and the presence of different respiratory pathogen species. All study populations hosted Pasteurellaceae and 17 (77%) hosted Mycoplasma ovipneumoniae. Average lamb:ewe ratios for individual populations where both Mycoplasma ovipneumoniae and Pasteurellaceae were detected ranged from 0.14 to 0.40. However, average lamb:ewe ratios were higher in populations where Mycoplasma ovipneumoniae was not detected (0.37, 95% CI: 0.27-0.51) than in populations where it was detected (0.25, 95% CI: 0.21-0.30). These findings suggest that respiratory pathogens are commonly hosted by bighorn sheep populations and often reduce recruitment rates; however ecological factors may interact with the pathogens to determine population-level effects. Elucidation of such factors could provide insights for management approaches that alleviate the effects of respiratory pathogens in bighorn sheep. Nevertheless, minimizing the introduction of novel pathogens from domestic sheep and goats remains imperative to bighorn sheep conservation.


Assuntos
Mycoplasma ovipneumoniae/isolamento & purificação , Pasteurellaceae/isolamento & purificação , Sistema Respiratório/microbiologia , Carneiro da Montanha/microbiologia , Animais , Conservação dos Recursos Naturais , Mycoplasma ovipneumoniae/fisiologia , Pasteurellaceae/fisiologia , Probabilidade
8.
J Wildl Dis ; 54(4): 852-858, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902131

RESUMO

In contrast to broad range expansion through translocations, many mountain goat ( Oreamnos americanus) populations have shown signs of decline. Recent documentation of pneumonia in mountain goats highlights their susceptibility to bacterial pathogens typically associated with bighorn sheep ( Ovis canadensis) epizootics. Respiratory pathogen communities of mountain goats are poorly characterized yet have important implications for management and conservation of both species. We characterized resident pathogen communities across a range of mountain goat populations as an initial step to inform management efforts. Between 2010 and 2017, we sampled 98 individuals within three regions of the Greater Yellowstone Area (GYA), with a smaller sampling effort in southeast Alaska, US. Within the GYA, we detected Mycoplasma ovipneumoniae in two regions and we found at least two Pasteurellaceae species in animals from all regions. Mannheimia haemolytica was the only pathogen that we detected in southeast Alaska. Given the difficult sampling conditions, limited sample size, and imperfect detection, our failure to detect specific pathogens should be interpreted with caution. Nonetheless, respiratory pathogens within the GYA may be an important, yet underappreciated, cause of mountain goat mortality. Moreover, because of the strong niche overlap of bighorn sheep and mountain goats, interspecific transmission is an important concern for managers restoring or introducing mountain ungulates within sympatric ranges.


Assuntos
Bactérias/isolamento & purificação , Infecções Bacterianas/veterinária , Infecções Respiratórias/veterinária , Ruminantes/microbiologia , Animais , Bactérias/classificação , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA