Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(2): e1009257, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556148

RESUMO

Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Polissacarídeos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Epitopos/imunologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunização , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vacinação
2.
Biotechnol Bioeng ; 119(2): 663-666, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34796474

RESUMO

Therapeutic proteins, including monoclonal antibodies, are typically manufactured using clonally derived, stable host cell lines, since consistent and predictable cell culture performance is highly desirable. However, selecting and preparing banks of stable clones takes considerable time, which inevitably extends overall development timelines for new therapeutics by delaying the start of subsequent activities, such as the scale-up of manufacturing processes. In the context of the coronavirus disease 2019 (COVID-19) pandemic, with its intense pressure for accelerated development strategies, we used a novel transposon-based Leap-In Transposase® system to rapidly generate high-titer stable pools and then used them directly for large scale-manufacturing of an anti-severe acute respiratory syndrome coronavirus 2 monoclonal antibody under cGMP. We performed the safety testing of our non-clonal cell bank, then used it to produce material at a 200L-scale for preclinical safety studies and formulation development work, and thereafter at 2000L scale for supply of material for a Phase 1 clinical trial. Testing demonstrated the comparability of critical product qualities between the two scales and, more importantly, that our final clinical trial product met all pre-set product quality specifications. The above expediated approach provided clinical trial material within 4.5 months, in comparison to 12-14 months for production of clinical trial material via the conventional approach.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Células CHO , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ensaios Clínicos Fase I como Assunto/métodos , Ensaios Clínicos Fase I como Assunto/normas , Cricetulus , Pandemias , Transposases , Carga Viral
3.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490585

RESUMO

Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions.IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Macaca mulatta/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD4/genética , Linfócitos T CD4-Positivos/imunologia , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Vacinação , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
4.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701402

RESUMO

Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization.IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , Macaca mulatta/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação de Anticorpos/imunologia , HIV-1/imunologia , Macaca mulatta/virologia , Vacinação
5.
Biotechnol Bioeng ; 115(4): 885-899, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29150937

RESUMO

We describe the properties of BG505 SOSIP.664 HIV-1 envelope glycoprotein trimers produced under current Good Manufacturing Practice (cGMP) conditions. These proteins are the first of a new generation of native-like trimers that are the basis for many structure-guided immunogen development programs aimed at devising how to induce broadly neutralizing antibodies (bNAbs) to HIV-1 by vaccination. The successful translation of this prototype demonstrates the feasibility of producing similar immunogens on an appropriate scale and of an acceptable quality for Phase I experimental medicine clinical trials. BG505 SOSIP.664 trimers are extensively glycosylated, contain numerous disulfide bonds and require proteolytic cleavage, all properties that pose a substantial challenge to cGMP production. Our strategy involved creating a stable CHO cell line that was adapted to serum-free culture conditions to produce envelope glycoproteins. The trimers were then purified by chromatographic methods using a 2G12 bNAb affinity column and size-exclusion chromatography. The chosen procedures allowed any adventitious viruses to be cleared from the final product to the required extent of >12 log10 . The final cGMP production run yielded 3.52 g (peptidic mass) of fully purified trimers (Drug Substance) from a 200 L bioreactor, a notable yield for such a complex glycoprotein. The purified trimers were fully native-like as judged by negative-stain electron microscopy, and were stable over a multi-month period at room temperature or below and for at least 1 week at 50°C. Their antigenicity, disulfide bond patterns, and glycan composition were consistent with trimers produced on a research laboratory scale. The methods reported here should pave the way for the cGMP production of other native-like Env glycoprotein trimers of various designs and genotypes.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Células CHO , Cricetulus , Glicosilação , Infecções por HIV/virologia , Humanos , Multimerização Proteica , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
6.
Mol Ther ; 22(12): 2118-2129, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25027661

RESUMO

Nucleic acid-based vaccines such as viral vectors, plasmid DNA, and mRNA are being developed as a means to address a number of unmet medical needs that current vaccine technologies have been unable to address. Here, we describe a cationic nanoemulsion (CNE) delivery system developed to deliver a self-amplifying mRNA vaccine. This nonviral delivery system is based on Novartis's proprietary adjuvant MF59, which has an established clinical safety profile and is well tolerated in children, adults, and the elderly. We show that nonviral delivery of a 9 kb self-amplifying mRNA elicits potent immune responses in mice, rats, rabbits, and nonhuman primates comparable to a viral delivery technology, and demonstrate that, relatively low doses (75 µg) induce antibody and T-cell responses in primates. We also show the CNE-delivered self-amplifying mRNA enhances the local immune environment through recruitment of immune cells similar to an MF59 adjuvanted subunit vaccine. Lastly, we show that the site of protein expression within the muscle and magnitude of protein expression is similar to a viral vector. Given the demonstration that self-amplifying mRNA delivered using a CNE is well tolerated and immunogenic in a variety of animal models, we are optimistic about the prospects for this technology.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Emulsões/administração & dosagem , Imunidade Celular , RNA Mensageiro/imunologia , RNA Viral/imunologia , Vacinas de DNA/administração & dosagem , Animais , Cátions , Emulsões/química , Feminino , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Ratos
7.
Proc Natl Acad Sci U S A ; 108(23): 9619-24, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21586636

RESUMO

Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals. The 3.2-Å X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sítios de Ligação de Anticorpos , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Imunização , Lactente , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Palivizumab , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/metabolismo , Homologia de Sequência de Aminoácidos , Sigmodontinae , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestrutura
8.
NPJ Vaccines ; 9(1): 72, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575581

RESUMO

Varicella zoster virus (VZV) is a highly contagious human herpes virus responsible for causing chickenpox (varicella) and shingles (herpes zoster). Despite the approval of a highly effective vaccine, Shingrix®, the global incidence of herpes zoster is increasing and the economic burden to the health care system and society are substantial due to significant loss of productivity and health complications, particularly among elderly and immunocompromised individuals. This is primarily because access to the vaccines remains mostly limited to countries within developed economies, such as USA and Canada. Therefore, similarly effective vaccines against VZV that are more accessible to the rest-of-the-world are necessary. In this study, we aimed to evaluate immunogenicity and memory response induced by three mRNA-LNP-based vaccine candidates targeting VZV's surface glycoprotein E (gE). C57BL/6 mice were immunized with each candidate vaccine, and humoral and cellular immune responses were assessed. Our results demonstrate that the mRNA-LNP-based vaccine candidates elicited robust and durable humoral responses specific to the gE antigen. Notably, mice vaccinated with the mRNA-LNP vaccines exhibited significantly higher antigen-specific T-cell cytokine production compared to the group receiving Shingrix®, the current standard of care vaccine. Additionally, mRNA-LNP vaccines induced long-lasting memory response, as evidenced by detection of persistent gE-specific Long-Lived Plasma Cells (LLPCs) and memory T cells four months after final immunization. These findings underscore the potential of our mRNA-LNP-based vaccine candidates in generating potent immune responses against VZV, offering promising prospects for their clinical development as an effective prophylactic vaccine against herpes zoster.

9.
medRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766048

RESUMO

Stabilized trimers preserving the native-like HIV envelope structure may be key components of a preventive HIV vaccine regimen to induce broadly neutralizing antibodies (bnAbs). We evaluated trimeric BG505 SOSIP.664 gp140, formulated with a novel TLR7/8 signaling adjuvant, 3M-052-AF/Alum, for safety, adjuvant dose-finding and immunogenicity in a first-in-healthy adult (n=17), randomized, placebo-controlled trial (HVTN 137A). The vaccine regimen appeared safe. Robust, trimer-specific antibody, B-cell and CD4+ T-cell responses emerged post-vaccination. Five vaccinees developed serum autologous tier-2 nAbs (ID50 titer, 1:28-1:8647) after 2-3 doses targeting C3/V5 and/or V1/V2/V3 Env regions by electron microscopy and mutated pseudovirus-based neutralization analyses. Trimer-specific, B-cell-derived monoclonal antibody activities confirmed these results and showed weak heterologous neutralization in the strongest responder. Our findings demonstrate the clinical utility of the 3M-052-AF/alum adjuvant and support further improvements of trimer-based Env immunogens to focus responses on multiple broad nAb epitopes. KEY TAKEAWAY/TAKE-HOME MESSAGES: HIV BG505 SOSIP.664 trimer with novel 3M-052-AF/alum adjuvant in humans appears safe and induces serum neutralizing antibodies to matched clade A, tier 2 virus, that map to diverse Env epitopes with relatively high titers. The novel adjuvant may be an important mediator of vaccine response.

10.
Sci Rep ; 13(1): 21172, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040905

RESUMO

Several COVID-19 vaccines, some more efficacious than others, are now available and deployed, including multiple mRNA- and viral vector-based vaccines. With the focus on creating cost-effective solutions that can reach the low- and medium- income world, GreenLight Biosciences has developed an mRNA vaccine candidate, GLB-COV2-043, encoding for the full-length SARS-CoV-2 Wuhan wild-type spike protein. In pre-clinical studies in mice, GLB-COV2-043 induced robust antigen-specific binding and virus-neutralizing antibody responses targeting homologous and heterologous SARS-CoV-2 variants and a TH1-biased immune response. Boosting mice with monovalent or bivalent mRNA-LNPs provided rapid recall and long-lasting neutralizing antibody titers, an increase in antibody avidity and breadth that was held over time and generation of antigen-specific memory B- and T- cells. In hamsters, vaccination with GLB-COV2-043 led to lower viral loads, reduced incidence of SARS-CoV-2-related microscopic findings in lungs, and protection against weight loss after heterologous challenge with Omicron BA.1 live virus. Altogether, these data indicate that GLB-COV2-043 mRNA-LNP vaccine candidate elicits robust protective humoral and cellular immune responses and establishes our mRNA-LNP platform for subsequent clinical evaluations.


Assuntos
COVID-19 , Cricetinae , Animais , Humanos , Camundongos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Modelos Animais , RNA Mensageiro/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
11.
J Biol Chem ; 286(24): 21706-16, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21487012

RESUMO

CD4 binding on gp120 leads to the exposure of highly conserved regions recognized by the HIV co-receptor CCR5 and by CD4-induced (CD4i) antibodies. A covalent gp120-CD4 complex was shown to elicit CD4i antibody responses in monkeys, which was correlated with control of the HIV virus infection (DeVico, A., Fouts, T., Lewis, G. K., Gallo, R. C., Godfrey, K., Charurat, M., Harris, I., Galmin, L., and Pal, R. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 17477-17482). Because the inclusion of CD4 in a vaccine formulation should be avoided, due to potential autoimmune reactions, we engineered small sized CD4 mimetics (miniCD4s) that are poorly immunogenic and do not induce anti-CD4 antibodies. We made covalent complexes between such an engineered miniCD4 and gp120 or gp140, through a site-directed coupling reaction. These complexes were recognized by CD4i antibodies as well as by the HIV co-receptor CCR5. In addition, they elicit CD4i antibody responses in rabbits and therefore represent potential vaccine candidates that mimic an important HIV fusion intermediate, without autoimmune hazard.


Assuntos
Linfócitos T CD4-Positivos/virologia , Proteína gp120 do Envelope de HIV/química , HIV-1/química , Proteínas do Envelope Viral/química , Animais , Apresentação de Antígeno , Células CHO , Cricetinae , Cricetulus , Reagentes de Ligações Cruzadas/química , Cisteína/química , Dissulfetos , Ligação Proteica , Conformação Proteica , Receptores CCR5/química
12.
J Virol ; 84(1): 201-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846514

RESUMO

The entry of human immunodeficiency virus type 1 (HIV-1) into a target cell entails a series of conformational changes in the gp41 transmembrane glycoprotein that mediates the fusion of the viral and target cell membranes. A trimer-of-hairpins structure formed by the association of two heptad repeat (HR) regions of the gp41 ectodomain has been implicated in a late step of the fusion pathway. Earlier native and intermediate states of the protein are postulated to mediate the antiviral activity of the fusion inhibitor enfuvirtide and of broadly neutralizing monoclonal antibodies (NAbs), but the details of these structures remain unknown. Here, we report the identification and crystal structure of a dimerization domain in the C-terminal ectodomain of gp41 (residues 630 to 683, or C54). Two C54 monomers associate to form an asymmetric, antiparallel coiled coil with two distinct C-terminal alpha-helical overhangs. This dimer structure is conferred largely by interactions within a central core that corresponds to the sequence of enfuvirtide. The mutagenic alteration of the dimer interface severely impairs the infectivity of Env-pseudotyped viruses. Moreover, the C54 structure binds tightly to both the 2F5 and 4E10 NAbs and likely represents a potential intermediate conformation of gp41. These results should enhance our understanding of the molecular basis of the gp41 fusogenic structural transitions and thereby guide rational, structure-based efforts to design new fusion inhibitors and vaccine candidates intended to induce broadly neutralizing antibodies.


Assuntos
Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/fisiologia , HIV-1/patogenicidade , Internalização do Vírus , Anticorpos Monoclonais/imunologia , Cristalografia por Raios X , Enfuvirtida , Proteína gp41 do Envelope de HIV/imunologia , Inibidores da Fusão de HIV/química , Humanos , Fusão de Membrana , Mutagênese , Fragmentos de Peptídeos/química , Conformação Proteica , Multimerização Proteica
13.
J Adv Manuf Process ; 2(3): e10060, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33977274

RESUMO

Overcoming pandemics, such as the current Covid-19 outbreak, requires the manufacture of several billion doses of vaccines within months. This is an extremely challenging task given the constraints in small-scale manufacturing for clinical trials, clinical testing timelines involving multiple phases and large-scale drug substance and drug product manufacturing. To tackle these challenges, regulatory processes are fast-tracked, and rapid-response manufacturing platform technologies are used. Here, we evaluate the current progress, challenges ahead and potential solutions for providing vaccines for pandemic response at an unprecedented scale and rate. Emerging rapid-response vaccine platform technologies, especially RNA platforms, offer a high productivity estimated at over 1 billion doses per year with a small manufacturing footprint and low capital cost facilities. The self-amplifying RNA (saRNA) drug product cost is estimated at below 1 USD/dose. These manufacturing processes and facilities can be decentralized to facilitate production, distribution, but also raw material supply. The RNA platform technology can be complemented by an a priori Quality by Design analysis aided by computational modeling in order to assure product quality and further speed up the regulatory approval processes when these platforms are used for epidemic or pandemic response in the future.

14.
Antibodies (Basel) ; 9(3)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751063

RESUMO

The discovery of numerous potent and broad neutralizing antibodies (bNAbs) against Human Immunodeficiency Virus type 1 (HIV-1) envelope glycoprotein has invigorated the potential of using them as an effective preventative and therapeutic agent. The majority of the anti-HIV-1 antibodies, currently under clinical investigation, are formulated singly for intra-venous (IV) infusion. However, due to the high degree of genetic variability in the case of HIV-1, a single broad neutralizing antibody will likely not be sufficient to protect against the broad range of viral isolates. To that end, delivery of two or more co-formulated bnAbs against HIV-1 in a single subcutaneous (SC) injection is highly desired. We, therefore, co-formulated two anti-HIV bnAbs, 3BNC117-LS and 10-1074-LS, to a total concentration of 150 mg/mL for SC administration and analyzed them using a panel of analytical techniques. Chromatographic based methods, such as RP-HPLC, CEX-HPLC, SEC-HPLC, were developed to ensure separation and detection of each antibody in the co-formulated sample. In addition, we used a panel of diverse pseudoviruses to detect the functionality of individual antibodies in the co-formulation. We also used these methods to test the stability of the co-formulated antibodies and believe that such an approach can support future efforts towards the formulation and characterization of multiple high-concentration antibodies for SC delivery.

15.
Vaccines (Basel) ; 8(3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640600

RESUMO

A vaccine will likely be one of the key tools for ending the HIV-1/AIDS epidemic by preventing HIV-1 spread within uninfected populations and achieving a cure for people living with HIV-1. The currently prevailing view of the vaccine field is to introduce protective antibodies, nevertheless, a vaccine to be effective may need to harness protective T cells. We postulated that focusing a T-cell response on the most vulnerable regions of the HIV-1 proteome while maximizing a perfect match between the vaccine and circulating viruses will control HIV-1 replication. We currently use a combination of replication-deficient simian (chimpanzee) adenovirus and poxvirus modified vaccinia virus Ankara to deliver bivalent conserved-mosaic immunogens to human volunteers. Here, we exploit the mRNA platform by designing tetravalent immunogens designated as HIVconsvM, and demonstrate that mRNA formulated in lipid nanoparticles induces potent, broad and polyfunctional T-cell responses in a pre-clinical model. These results support optimization and further development of this vaccine strategy in experimental medicine trials in humans.

16.
Biochemistry ; 48(13): 2915-23, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19226163

RESUMO

The conserved membrane-proximal external region (MPER) of the HIV-1 gp41 envelope protein is the established target for very rare but broadly neutralizing monoclonal antibodies (NAbs) elicited during natural human infection. Nevertheless, attempts to generate an HIV-1 neutralizing antibody response with immunogens bearing MPER epitopes have met with limited success. Here we show that the MPER peptide (residues 662-683) forms a labile alpha-helical trimer in aqueous solution and report the crystal structure of this autonomous folding subdomain stabilized by addition of a C-terminal isoleucine zipper motif. The structure reveals a parallel triple-stranded coiled coil in which the neutralization epitope residues are buried within the interface between the associating MPER helices. Accordingly, both the 2F5 and 4E10 NAbs recognize the isolated MPER peptide but fail to bind the trimeric MPER subdomain. We propose that the trimeric MPER structure represents the prefusion conformation of gp41, preceding the putative prehairpin intermediate and the postfusion trimer-of-hairpins structure. As such, the MPER trimer should inform the design of new HIV-1 immunogens to elicit broadly neutralizing antibodies.


Assuntos
Membrana Celular/metabolismo , Proteína gp41 do Envelope de HIV/química , Ligação Viral , Sequência de Aminoácidos , Anticorpos Monoclonais , Cristalografia por Raios X , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Soluções , Ressonância de Plasmônio de Superfície
17.
PLoS Pathog ; 3(11): e169, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17983270

RESUMO

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is a vaccine immunogen that can signal via several cell surface receptors. To investigate whether receptor biology could influence immune responses to gp120, we studied its interaction with human, monocyte-derived dendritic cells (MDDCs) in vitro. Gp120 from the HIV-1 strain JR-FL induced IL-10 expression in MDDCs from 62% of donors, via a mannose C-type lectin receptor(s) (MCLR). Gp120 from the strain LAI was also an IL-10 inducer, but gp120 from the strain KNH1144 was not. The mannose-binding protein cyanovirin-N, the 2G12 mAb to a mannose-dependent gp120 epitope, and MCLR-specific mAbs inhibited IL-10 expression, as did enzymatic removal of gp120 mannose moieties, whereas inhibitors of signaling via CD4, CCR5, or CXCR4 were ineffective. Gp120-stimulated IL-10 production correlated with DC-SIGN expression on the cells, and involved the ERK signaling pathway. Gp120-treated MDDCs also responded poorly to maturation stimuli by up-regulating activation markers inefficiently and stimulating allogeneic T cell proliferation only weakly. These adverse reactions to gp120 were MCLR-dependent but independent of IL-10 production. Since such mechanisms might suppress immune responses to Env-containing vaccines, demannosylation may be a way to improve the immunogenicity of gp120 or gp140 proteins.


Assuntos
Células Dendríticas/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Lectinas Tipo C/metabolismo , Manose/metabolismo , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Interleucina-10/biossíntese , Ativação Linfocitária/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Linfócitos T/imunologia
18.
J Pharm Sci ; 108(7): 2264-2277, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30776383

RESUMO

The induction of broadly neutralizing antibodies (bNAbs) is a major goal in the development of an effective vaccine against HIV-1. A soluble, trimeric, germline (gI) bNAb-targeting variant of the HIV-1 envelope glycoprotein (termed BG505 SOSIP.v4.1-GT1.1 gp140, abbreviated to GT1.1) has recently been developed. Here, we have compared this new immunogen with the parental trimer from which it was derived, BG505 SOSIP.664 gp140. We used a comprehensive suite of biochemical and biophysical methods to determine physicochemical similarities and differences between the 2 trimers, and thereby assessed whether additional formulation development efforts were needed for the GT1.1 vaccine candidate. The overall higher order structure and oligomeric states of the 2 vaccine antigens were quite similar, as were their thermal, chemical, and colloidal stability profiles, as evaluated during accelerated stability studies. Overall, we conclude that the primary sequence changes made to create the gl bNAb-targeting GT1.1 trimer did not detrimentally affect its physicochemical properties or stability profiles from a pharmaceutical perspective. This developability assessment of the BG505 GT1.1 vaccine antigen supports using the formulation and storage conditions previously identified for the parental SOSIP.664 trimer and enables the development of GT1.1 for phase I clinical studies.


Assuntos
Antígenos Virais/imunologia , Glicoproteínas/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Humanos , Multimerização Proteica/imunologia
19.
AIDS Res Hum Retroviruses ; 23(6): 817-28, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17604546

RESUMO

HIV type 1 (HIV-1) envelope is a noncovalent trimer of gp120-gp41 heterodimers, and its lability has hindered structural studies. SOSIP gp140 is a soluble, proteolytically mature form of the HIV-1 envelope wherein gp120-gp41 interactions are stabilized via a disulfide bond and gp41 contains an additional trimer-stabilizing point mutation. We describe the isolation of a substantially pure preparation of SOSIP gp140 trimers derived from KNH1144, a subtype A isolate. Following initial purification, the only significant contaminant was higher-order gp140 aggregates; however, 0.05% Tween 20 quantitatively converted these aggregates into trimers. The surfactant effect was rapid, dose dependent, and similarly effective for a subtype B SOSIP gp140. Surfactant-treated SOSIP gp140 retained favorable antigenicity and formed compact trimers 12-13 nm in size as determined by electron microscopy. This report provides the first description of homogeneous, cleaved HIV-1 envelope trimers. These proteins may be useful as vaccine immunogens and for studying structure-function relationships within the HIV-1 envelope glycoproteins.


Assuntos
Produtos do Gene env/química , Produtos do Gene env/isolamento & purificação , HIV-1/química , Produtos do Gene env/biossíntese , Humanos , Microscopia Eletrônica , Estrutura Quaternária de Proteína , Produtos do Gene env do Vírus da Imunodeficiência Humana
20.
AIDS Res Hum Retroviruses ; 22(6): 569-79, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16796532

RESUMO

The generation of an antibody response capable of neutralizing a broad range of clinical isolates remains an important goal of human immunodeficiency virus type 1 (HIV-1) vaccine development. Envelope glycoprotein (Env)-based vaccine candidates will also need to take into account the extensive genetic diversity of circulating HIV-1 strains. We describe here the generation of soluble, stabilized, proteolytically cleaved, trimeric forms of Env (SOSIP gp140 proteins) based on contemporary Env subtype A viruses from East Africa. We discuss issues associated with the construction, purification, and characterization of such complex proteins; not all env sequences allow the expression of trimeric proteins. However, stabilized trimers from one such protein, KNH1144 SOSIP gp140, were successfully made. These proteins are now being prepared for preclinical immunogenicity studies.


Assuntos
Produtos do Gene env , Anticorpos Anti-HIV/sangue , Vacinas contra a AIDS , África Oriental , Animais , Linhagem Celular , Dimerização , Desenho de Fármacos , Produtos do Gene env/química , Produtos do Gene env/imunologia , Produtos do Gene env/isolamento & purificação , Produtos do Gene env/metabolismo , HIV-1/classificação , Humanos , Camundongos , Testes de Neutralização , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA