Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 63(1): 179-193, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713010

RESUMO

AIMS/HYPOTHESIS: Exposure to sunlight has the potential to suppress metabolic dysfunction and obesity. We previously demonstrated that regular exposure to low-doses of ultraviolet radiation (UVR) reduced weight gain and signs of diabetes in male mice fed a high-fat diet, in part via release of nitric oxide from skin. Here, we explore further mechanistic pathways through which low-dose UVR exerts these beneficial effects. METHODS: We fed mice with a luciferase-tagged Ucp1 gene (which encodes uncoupling protein-1 [UCP-1]), referred to here as the Ucp1 luciferase transgenic mouse ('Thermomouse') a high-fat diet and examined the effects of repeated exposure to low-dose UVR on weight gain and development of metabolic dysfunction as well as UCP-1-dependent thermogenesis in interscapular brown adipose tissue (iBAT). RESULTS: Repeated exposure to low-dose UVR suppressed the development of glucose intolerance and hepatic lipid accumulation via dermal release of nitric oxide while also reducing circulating IL-6 (compared with mice fed a high-fat diet only). Dietary nitrate supplementation did not mimic the effects of low-dose UVR. A single low dose of UVR increased UCP-1 expression (by more than twofold) in iBAT of mice fed a low-fat diet, 24 h after exposure. However, in mice fed a high-fat diet, there was no effect of UVR on UCP-1 expression in iBAT (compared with mock-treated mice) when measured at regular intervals over 12 weeks. More extensive circadian studies did not identify any substantial shifts in UCP-1 expression in mice exposed to low-dose UVR, although skin temperature at the interscapular site was reduced in UVR-exposed mice. The appearance of cells with a white adipocyte phenotype ('whitening') in iBAT induced by consuming the high-fat diet was suppressed by exposure to low-dose UVR in a nitric oxide-dependent fashion. Significant shifts in the expression of important core gene regulators of BAT function (Dio2, increased more than twofold), fatty acid transport (increased Fatp2 [also known as Slc27a2]), lipolysis (decreased Atgl [also known as Pnpla2]), lipogenesis (decreased Fasn) and inflammation (decreased Tnf), and proportions of macrophages (increased twofold) were observed in iBAT of mice exposed to low-dose UVR. These effects were independent of nitric oxide released from skin. CONCLUSIONS/INTERPRETATION: Our results suggest that non-burning (low-dose) UVR suppresses the BAT 'whitening', steatotic and pro-diabetic effects of consuming a high-fat diet through skin release of nitric oxide, with some metabolic and immune pathways in iBAT regulated by UVR independently of nitric oxide.


Assuntos
Tecido Adiposo Marrom/metabolismo , Óxido Nítrico/metabolismo , Raios Ultravioleta , Tecido Adiposo Marrom/efeitos da radiação , Animais , Glicemia/metabolismo , Ingestão de Alimentos , Masculino , Camundongos , Pele/metabolismo , Pele/efeitos da radiação , Temperatura , Proteína Desacopladora 1/metabolismo , Aumento de Peso/fisiologia
2.
Sci Rep ; 11(1): 14522, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267259

RESUMO

Studies have reported a dose-dependent relationship between gestational age and poorer school readiness. The study objective was to quantify the risk of developmental vulnerability for children at school entry, associated with gestational age at birth and to understand the impact of sociodemographic and other modifiable risk factors on these relationships. Linkage of population-level birth registration, hospital, and perinatal datasets to the Australian Early Development Census (AEDC), enabled follow-up of a cohort of 64,810 singleton children, from birth to school entry in either 2009, 2012, or 2015. The study outcome was teacher-reported child development on the AEDC with developmental vulnerability defined as domain scores < 10th percentile of the 2009 AEDC cohort. We used modified Poisson Regression to estimate relative risks (RR) and risk differences (RD) of developmental vulnerability between; (i) preterm birth and term-born children, and (ii) across gestational age categories. Compared to term-born children, adjustment for sociodemographic characteristics attenuated RR for all preterm birth categories. Further adjustment for modifiable risk factors such as preschool attendance and reading status at home had some additional impact across all gestational age groups, except for children born extremely preterm. The RR and RD for developmental vulnerability followed a reverse J-shaped relationship with gestational age. The RR of being classified as developmentally vulnerable was highest for children born extremely preterm and lowest for children born late-term. Adjustment for sociodemographic characteristics attenuated RR and RD for all gestational age categories, except for early-term born children. Children born prior to full-term are at a greater risk for developmental vulnerabilities at school entry. Elevated developmental vulnerability was largely explained by sociodemographic disadvantage. Elevated vulnerability in children born post-term is not explained by sociodemographic disadvantage to the same extent as in children born prior to full-term.


Assuntos
Desenvolvimento Infantil , Deficiências do Desenvolvimento , Idade Gestacional , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/epidemiologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Mães , Estudos Retrospectivos , Fatores Socioeconômicos , Austrália Ocidental/epidemiologia
3.
J Endocrinol ; 244(3): 473-486, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31905167

RESUMO

In previous preclinical studies, low (non-burning) doses of UV radiation (UVR) limited weight gain and metabolic dysfunction in mice fed with a high-fat diet. Here, we explored the effects of low-dose UVR on physical activity and food intake and mechanistic pathways in interscapular brown adipose tissue (iBAT). Young adult C57Bl/6J male mice, housed as individuals, were fed a high-fat diet and exposed to low-dose UVR (sub-oedemal, 1 kJ/m2 UVB, twice-a-week) or 'mock' treatment, with or without running wheel access (2 h, for 'moderate' physical activity) immediately after phototherapy. There was no difference in distance run in mice exposed to UVR or mock-treated over 12 weeks of exposure to running wheels (P = 0.14). UVR (alone) did not significantly affect food intake, adiposity, or signs of glucose dysfunction. Access to running wheels increased food intake (after 10 weeks, P ≤ 0.02) and reduced gonadal white adipose tissue and iBAT mass (P ≤ 0.03). Body weight and hepatic steatosis were lowest in mice exposed to UVR with running wheel access. In the iBAT of mice exposed to UVR and running wheels, elevated Atgl, Cd36, Fasn, Igf1, Pparγ, and Ucp1 mRNAs and reduced CD11c on F4-80 + MHC class II+ macrophages were observed, while renal Sglt2 mRNA levels were increased, compared to high-fat diet alone (P ≤ 0.03). Blood levels of 25-hydroxyvitamin D were not increased by exposure to UVR and/or access to running wheels. In conclusion, when combined with physical activity, low-dose UVR may more effectively limit adiposity (specifically, body weight and hepatic steatosis) and modulate metabolic and immune pathways in iBAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Adiposidade/efeitos da radiação , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Lipase/genética , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Corrida , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA