Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 360: 127578, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35798165

RESUMO

Reaching industrially relevant productivities in bioprocesses and their efficient integration in the existing industrial infrastructure remain as important challenges in the circular economy to create closed loop sustainability framework. Using anaerobic digestion (AD) biorefinery as a model, the present work addressed these problems via integration of next-generation rhamnolipids production with AD. A high rhamnolipids concentration of 10.25 ± 1.34 g/L was obtained by fed-batch fermentation using food waste digestate as medium. Digestate-derived rhamnolipids contained Rha-C10-C10 and Rha-Rha-C10-C10 as the predominant congeners. These were used back in single-phase AD to demonstrate their effect on sludge solubilization and digestion efficiency. A dosage of 0.02 g rhamnolipids/g total suspended solids was found to be optimal which enhanced the hydrolysis-acidogenesis reactions to up to 27% over control. It however retarded methane production which could be overcome by the prolongation of digestion time. Finally, the value chain appreciation by the proposed process was demonstrated by a feasibility analysis.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Glicolipídeos , Metano , Esgotos/química
2.
Bioresour Technol ; 352: 127083, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364238

RESUMO

Bioenergy and biochemicals can be sustainably produced through fermentation and anaerobic digestion (AD). However, this bioconversion processes could be more economical if the hydrolysis rates of substrates in bioreactors can be accelerated. In this review, the feasibilities of including enzymatic hydrolysis (EH) in various bioconversion systems were studied to facilitate the biological synergy. The reaction kinetics of EH in bioconversion systems comparing pretreated lignocellulosic biomass (LCB) and food waste (FW) substrates were reviewed. Possible strategies to improve the hydrolysis efficiency were explored, including co-cultivation during enzyme production and replacement of pure enzyme with on-site produced fungal mash during EH. Key insights into improvement of current AD and fermentation technologies were summarized and further formed into suggestions of future directions in techno-economic feasibility of biorefinery using mixture of the first-generation food crop feedstock with FW; and/or co-digestion of FW with LCB.


Assuntos
Alimentos , Eliminação de Resíduos , Biocombustíveis , Biomassa , Fermentação , Hidrólise , Cinética , Lignina , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA