Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116202, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479314

RESUMO

Many laboratory studies demonstrated that the exposure to microplastics causes testosterone deficiency and spermatogenic impairment in mammals; however, the mechanism underlying this process remains still unclear. In this study, we investigated the effects of polystyrene microplastics (PS-MP) on the proliferation and functionality of cultured Leydig (TM3) and Sertoli (TM4) cells, focusing on the mitochondrial compartment and its association with the endoplasmic reticulum (ER). The in vitro exposure to PS-MP caused a substantial reduction in cellular viability in TM3 and TM4 cells. In TM3 cells PS-MP inhibited the protein levels of StAR and of steroidogenic enzymes 3ß-HSD and 17ß-HSD, and in TM4 cells PS-MP inhibited the protein levels of the androgen receptors other than the activity of lactate dehydrogenase (LDH). PS-MP inhibited the functions of TM3 and TM4, as evidenced by the decrease of the phosphorylation of ERK1/2 and Akt in both cell lines. The oxidative stress caused by PS-MP decreased antioxidant defense in TM3 and TM4 cells, promoting autophagic and apoptotic processes. Furthermore, we found mitochondrial dysfunction and activation of ER stress. It is known that mitochondria are closely associated with ER to form the Mitochondrial-Associated Endoplasmic Reticulum Membranes (MAM), the site of calcium ions transfer as well as of lipid biosynthesis-involved enzymes and cholesterol transport from ER to the mitochondria. For the first time, we studied this aspect in PS-MP-treated TM3 and TM4 cells and MAMs dysregulation was observed. This study is the first to elucidate the intracellular mechanism underlying the effects of PS-MPs in somatic testicular cells, corroborating that PS-MP might be one of the causes of an increase in male infertility through the impairment of steroidogenesis in Leydig cells and of the nurse function of Sertoli cells. Thus, our findings contributed with new information to the mechanism underlying the effects of PS-MP on the male reproductive system.


Assuntos
Microplásticos , Plásticos , Camundongos , Masculino , Animais , Poliestirenos/toxicidade , Testículo , Retículo Endoplasmático , Mamíferos
2.
Ecotoxicol Environ Saf ; 259: 115067, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244200

RESUMO

Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3ß-HSD, and 17ß-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.


Assuntos
Cádmio , Testículo , Ratos , Humanos , Animais , Masculino , Cádmio/metabolismo , Ácido D-Aspártico/farmacologia , Ácido D-Aspártico/metabolismo , Espermatogênese , Estresse Oxidativo , Testosterona
3.
Gen Comp Endocrinol ; 328: 114104, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973585

RESUMO

High-fat diet (HFD) affects the physiology of reproduction in males, and many studies have investigated its detrimental effects. In this study, we investigated the cellular response induced by an HFD in the rat testis, focusing on the mitochondrial compartment. After five weeks of HFD, an increase in the levels of malondialdehyde and of reduced form of glutathione in the rat testis indicated an increase in lipid peroxidation. The results showed an increase in autophagy, apoptosis, and mitochondrial damage in the testis of HFD rats. We found a decrease in the protein expression of mitochondrial antioxidant enzymes, such as catalase and SOD2. Immunohistochemical analysis revealed a decrease in the immunofluorescent signal of SOD2, mainly in the spermatogonia and spermatocytes of HFD rats. HFD-induced mitochondrial damage caused a reduction in mitochondria, as evidenced by a decrease in the protein expression of TOM20, a mitochondrial outer membrane receptor. Consistently, HFD enhanced the levels of the PINK1 protein, a mitophagy marker, suggesting the removal of damaged mitochondria under these conditions. Induction of mtDNA damage and repair was stronger in the HFD rat testis. Finally, we found a decrease in the mtDNA copy number and expression of the POLG enzyme, which is involved in mtDNA replication. In conclusion, our results showed that autophagy and apoptosis are activated in the testis of HFD rats as a survival strategy to cope with oxidative stress. Furthermore, HFD-induced oxidative stress affects the mitochondria, inducing mtDNA damage and mtDNA copy number reduction. Mitophagy and mtDNA repair mechanisms might represent a mitochondrial adaptive response.


Assuntos
Antioxidantes , Dieta Hiperlipídica , Animais , Antioxidantes/metabolismo , Autofagia/genética , Catalase/metabolismo , Catalase/farmacologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Ratos , Testículo/metabolismo
4.
Amino Acids ; 52(9): 1263-1273, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32930873

RESUMO

D-Aspartate, D-serine and D-alanine are a regular occurrence in mammalian endocrine tissues, though in amounts varying with the type of gland. The pituitary gland, pineal gland, thyroid, adrenal glands and testis contain relatively large amounts of D-aspartate in all species examined. D-alanine is relatively abundant in the pituitary gland and pancreas. High levels of D-serine characterize the hypothalamus. D-leucine, D-proline and D-glutamate are generally low. The current knowledge of physiological roles of D-amino acids in endocrine tissues is far from exhaustive, yet the topic is attracting increasing interest because of its potential in pharmacological application. D-aspartate is known to act at all levels of the hypothalamus-pituitary-testis axis, playing a key role in reproductive biology in several vertebrate classes. An involvement of D-amino acids in the endocrine function of the pancreas is emerging. D-Aspartate has been immunolocalized in insulin-containing secretory granules in INS-1 E clonal ß cells and is co-secreted with insulin by exocytosis. Specific immunolocalization of D-alanine in pituitary ACTH-secreting cells and pancreatic ß-cells suggests that this amino acid participates in blood glucose regulation in mammals. By modulating insulin secretion, D-serine probably participates in the control of systemic glucose metabolism by modulating insulin secretion. We anticipate that future investigation will significantly increase the functional repertoire of D-amino acids in homeostatic control.


Assuntos
Aminoácidos/metabolismo , Exocitose , Glucose/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Animais , Mamíferos
5.
Gen Comp Endocrinol ; 298: 113578, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32739437

RESUMO

This issue is dedicated to the late Professor Giovanni Chieffi, and this article is an overview of the research on Comparative Endocrinology of reproduction using Rana esculenta (alias Pelophylax esculentus) as a model system. Starting from the early 1970s till today, a large quantity of work have been conducted both in the fields of experimental endocrinology and in the definition of the diffuse neuroendocrine system, with a major focus on the increasing role of regulatory peptides. The various aspects investigated concerned the histological descriptions of principal endocrine glands of the hypothalamic-pituitary-gonadal (HPG) axis, the localization and distribution in the HPG of several different substances (i.e. neurosteroids, hypothalamic peptide hormones, pituitary gonadotropins, gonadal sex steroids, and other molecules), the determination of sex hormone concentrations in both serum and tissues, the hormone manipulations, as well as the gene and protein expression of steroidogenic enzymes and their respective receptors. All together these researches, often conducted considering different periods of the annual reproductive cycle of the green frog, allowed to understand the mechanism of cascade control/regulation of the HPG axis of R. esculenta, characterizing the role of different hormones in the two sexes, and testing the hypotheses about the function of single hormones in different target organs. It becomes evident from the review that, in their simplest form, several features of this species are specular as compared to those of other vertebrate species and that reproduction in this frog species is either under endogenous multi-hormonal control or by a wide array of different factors. Our excursus of this research, spanning almost five decades, shows that R. esculenta has been intensively and successfully used as an animal model in reproductive endocrinology as well as several field studies such as those involving environmental concerns that focus on the effects of endocrine disruptors and other environmental contaminants.


Assuntos
Endocrinologia , Rana clamitans/fisiologia , Reprodução/fisiologia , Pesquisa , Animais , Meio Ambiente , Caracteres Sexuais
6.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218144

RESUMO

The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.


Assuntos
Encéfalo/metabolismo , Ácido D-Aspártico/metabolismo , Sistemas Neurossecretores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , D-Aspartato Oxidase/metabolismo , Hormônio do Crescimento/biossíntese , Humanos , N-Metilaspartato/metabolismo , Especificidade por Substrato
7.
J Exp Zool B Mol Dev Evol ; 332(6): 198-209, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31433565

RESUMO

The quail Coturnix coturnix is a seasonal breeder with a physiological switch on/off of gonadic activity. Photoperiod and temperature are the major environmental factors regulating the spermatogenesis. To more thoroughly comprehend the steroidogenic pathways that govern the seasonal reproductive cycle, we have investigated the localization of StAR protein and steroidogenic enzymes (3ß-HSD, 17ß-HSD, P450 aromatase, and 5α-Red) as well as androgen and estrogen levels, in the testis of reproductive and nonreproductive quails. We demonstrated that StAR, 3ß-HSD, 17ß-HSD, P450 aromatase, and 5α-Red were always present in the somatic (Leydig and Sertoli cells) and germ cells (spermatogonia, spermatocytes I and II, spermatids, and spermatozoa). In addition, by western blot analysis, we demonstrated that 17ß-HSD, P450 aromatase, and 5α-Red showed the highest expression levels during the reproductive testis compared with nonreproductive one. Accordingly, we also found that during the reproductive phase the highest titres of testosterone, 17ß-estradiol, and 5α-dihydrotestosterone are recorded. In conclusion, our findings demonstrated that in C. coturnix: (a) both somatic and germ cells are involved in the local synthesis of sex hormones; (b) 17ß-HSD, P450 aromatase, and 5α-Red expressions, as well as testicular androgens and estrogens, increased in reproductive quail testis. This study strongly indicates that the steroidogenic process in quail testis exhibits seasonal changes with the promotion of both androgenic and estrogenic pathways in the reproductive period, suggesting their synergic mechanism in the spermatogenesis regulation.


Assuntos
Coturnix/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Estações do Ano , Testículo/enzimologia , Animais , Masculino , Testículo/citologia , Testículo/metabolismo
8.
Reproduction ; 158(4): 357-367, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31398714

RESUMO

D-Aspartate (D-Asp) is an endogenous amino acid that plays a central role in the development of the central nervous system (CNS) and functioning of the neuroendocrine system. In line with its functions, it is abundantly present in the CNS and reproductive systems of vertebrates and invertebrates. It has been implicated in the biosynthesis and/or secretion of hormones and factors that are involved in various reproductive functions, such as GnRH from the hypothalamus and testosterone from the testis. We conducted an in vivo study consisting of acute (i.p. injection of 2 µmol/g body weight) and chronic (15 days drinking solution) administration of D-Asp to adult rats to understand the signaling pathways elicited by D-Asp in the rat testis. We found that D-Asp upregulated the expression of prolyl endopeptidase (PREP), a serine protease having a pivotal role in the regulation of mammalian spermatogenesis and spermiogenesis. Immunofluorescence analysis revealed its overexpression in Leydig cells, Sertoli cells and spermatogonia. Moreover, PREP was found to co-localize with GluA2/3, an AMPA receptor subunit, whose protein expression also increased after D-Asp treatments. Finally, we found a significant increase in ERK and Akt activities in the testis of rats treated with D-Asp. Since PREP is known to be involved in regulating GnRH levels and in germ cell differentiation, we hypothesize D-Asp to play a pivotal role in regulating hormone homeostasis and spermatogenesis through activation of PREP, AMPAR, ERK and Akt.


Assuntos
Ácido D-Aspártico/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de AMPA/metabolismo , Serina Endopeptidases/metabolismo , Testículo/metabolismo , Administração Oral , Animais , Ácido D-Aspártico/farmacologia , Masculino , Prolil Oligopeptidases , Ratos , Ratos Wistar , Testículo/efeitos dos fármacos
9.
Mol Reprod Dev ; 86(10): 1324-1332, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111596

RESUMO

It is a widely held belief that environmental contaminants contribute to the decline of amphibian populations. By spending most of their early life in water and later stages on the land, amphibians face a constant risk of exposure to pesticides and other chemical pollutants in both aquatic and terrestrial environments. This review presents an overview of the studies carried out in Italian amphibians to highlight hazardous effects of bioaccumulation of chemical pollutants in juveniles and adults in various contaminated environments. Further, the studies in the laboratory setting assessing the effects of chemical pollutants on reproductive and developmental processes are reported. These studies and their relative references have been summarized in a tabular form. Three prominent contaminant groups were identified: herbicides, insecticides, and fungicides; and only a few works reported the effects of other chemical pollutants. Each pollutant group has been delegated to a section. All through the literature survey, it is seen that interest in this topic in Italy is very recent and sparse, where only a few anuran and caudata species and only some chemical pollutants have been studied.


Assuntos
Anfíbios , Poluentes Ambientais/toxicidade , Praguicidas/toxicidade , Reprodução/efeitos dos fármacos , Anfíbios/embriologia , Anfíbios/crescimento & desenvolvimento , Anfíbios/fisiologia , Animais , Itália , Estágios do Ciclo de Vida/efeitos dos fármacos
10.
Reprod Fertil Dev ; 30(7): 1038-1048, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31039968

RESUMO

Male broiler breeders (n=32) of 55 weeks of age were administered four different doses of capsulated d-aspartate (DA; 0, 100, 200 or 300mgkg-1day-1, p.o. (DA0, DA100, DA200 and DA300 respectively)) for 12 successive weeks to assess reproductive performance, blood testosterone, testicular histology and transcript levels of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (P450scc), androgen receptor (AR), LH receptor (LHR), 3ß-hydroxysteroid dehydrogenase (3BHSD), proliferating cell nuclear antigen (PCNA), glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) and glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B). Blood samples and ejaculates were collected, and bodyweight was recorded weekly for 10 weeks. AI was performed weekly for the last 2 weeks to determine the number of sperm penetration holes in the perivitelline layer, fertility and hatchability. Testes histology and transcript levels were evaluated in the 12th week. Bodyweight, numbers of Leydig cells and blood vessels, testis index and levels of sperm abnormalities were not affected (P>0.05) by the treatment. However, sperm total and forward motility, plasma membrane integrity and functionality of sperm, ejaculate volume, testosterone concentration and fertility were higher (P<0.05) in both the DA200 and DA300 groups compared with the other groups. In the DA100 and DA200 groups, sperm concentration, number of spermatogonia, thickness of the seminiferous epithelium and the diameter of tubules were significantly higher (P<0.05) than the other DA-treated groups. The number of penetration holes, hatchability and malondialdehyde concentration were higher in the DA200, all DA-treated and DA300 groups respectively compared with the control and other treatment groups. Except for P450scc, AR, LHR and PCNA transcript levels in the DA300 groups, the relative expression of the genes evaluated improved significantly in the other DA-treated groups. Based on these experimental findings, it is concluded that DA improves reproductive performance of aged roosters.


Assuntos
Ácido D-Aspártico/farmacologia , Expressão Gênica/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Galinhas/fisiologia , Enzima de Clivagem da Cadeia Lateral do Colesterol , Proteínas de Drosophila/metabolismo , Masculino , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptores Androgênicos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reprodução/fisiologia , Análise do Sêmen , Testículo/metabolismo
11.
Gen Comp Endocrinol ; 246: 226-232, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28027903

RESUMO

The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians.


Assuntos
Anuros/metabolismo , Aromatase/genética , Regulação da Expressão Gênica , Fosfoproteínas/genética , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Estações do Ano , Animais , Encéfalo/metabolismo , Diencéfalo/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Fator Esteroidogênico 1/genética , Telencéfalo/metabolismo
12.
J Cell Physiol ; 231(2): 490-5, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26189884

RESUMO

D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor ß (ERß). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERß pathway.


Assuntos
Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacologia , Espermatogênese/efeitos dos fármacos , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Animais , Aromatase/genética , Aromatase/metabolismo , Aurora Quinase B/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proliferação de Células/fisiologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/metabolismo
13.
J Exp Biol ; 219(Pt 15): 2402-8, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27489219

RESUMO

P450 aromatase is a key enzyme in steroidogenesis involved in the conversion of testosterone into 17ß-estradiol. We investigated the localization and the expression of P450 aromatase in Podarcis sicula testes during the different phases of the reproductive cycle: summer stasis (July-August), early autumnal resumption (September), middle autumnal resumption (October-November), winter stasis (December-February), spring resumption (March-April) and the reproductive period (May-June). Using immunohistochemistry, we demonstrated that the P450 aromatase is always present in somatic and germ cells of P. sicula testis, particularly in spermatids and spermatozoa, except in early autumnal resumption, when P450 aromatase is evident only within Leydig cells. Using real-time PCR and semi-quantitative blot investigations, we also demonstrated that both mRNA and protein were expressed in all phases, with two peaks of expression occurring in summer and in winter stasis. These highest levels of P450 aromatase are in line with the increase of 17ß-estradiol, responsible for the spermatogenesis block typical of this species. Differently, in autumnal resumption, the level of P450 aromatase dramatically decreased, along with 17ß-estradiol levels, and testosterone titres increased, responsible for the subsequent renewal of spermatogenesis not followed by spermiation. In spring resumption and in the reproductive period we found intermediate P450 aromatase amounts, low levels of 17ß-estradiol and the highest testosterone levels determining the resumption of spermatogenesis needed for reproduction. Our results, the first collected in a non-mammalian vertebrate, indicate a role of P450 aromatase in the control of steroidogenesis and spermatogenesis, particularly in spermiogenesis.


Assuntos
Aromatase/metabolismo , Lagartos/fisiologia , Espermatogênese , Animais , Aromatase/genética , Western Blotting , Hormônios Esteroides Gonadais/metabolismo , Imuno-Histoquímica , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/fisiologia , Espermatogênese/genética , Testículo/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-26517944

RESUMO

Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide that in mammalian testis is involved in the control of testosterone and 17ß-estradiol synthesis. A similar involvement was recently postulated in the testis of a nonmammalian vertebrate, the wall lizard Podarcis sicula. Indeed, we reported the presence of PACAP and its receptors throughout the reproductive cycle within both germ and somatic cells. Now, we investigated the effects of PACAP on steroidogenesis in significant periods of Podarcis reproductive cycle: winter stasis, reproductive period and summer stasis. Using different in vitro treatments, in the absence or presence of receptor antagonists, we demonstrated that in P. sicula testis PACAP is involved in the control of testosterone and 17ß-estradiol production. In particular we demonstrated that treatment with PACAP induced a testosterone increase only in stasis periods (winter and summer stasis); differently they induced a 17ß-estradiol production in all periods analyzed (summer stasis, winter stasis and reproductive period).


Assuntos
Estradiol/biossíntese , Lagartos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Testículo/metabolismo , Testosterona/biossíntese , Animais , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Reprodução/efeitos dos fármacos , Estações do Ano , Testículo/efeitos dos fármacos
15.
Int J Mol Sci ; 17(7)2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27428949

RESUMO

A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor ß (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.


Assuntos
Ácido D-Aspártico/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Animais , Humanos , Masculino , Ratos
16.
Amino Acids ; 46(8): 1805-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24839076

RESUMO

Free D-aspartate (D-Asp) occurs in substantial amounts in glandular tissues. This paper reviews the existing work on D-Asp in vertebrate exocrine and endocrine glands, with emphasis on functional roles. Endogenous D-Asp was detected in salivary glands. High D-Asp levels in the parotid gland during development suggest an involvement of the amino acid in the regulation of early developmental phases and/or differentiation processes. D-Asp has a prominent role in the Harderian gland, where it elicits exocrine secretion through activation of the ERK1/2 pathway. Interestingly, the increase in NOS activity associated with D-Asp administration in the Harderian gland suggests a potential capability of D-Asp to induce vasodilatation. In mammals, an increase in local concentrations of D-Asp facilitates the secretion of anterior pituitary hormones, i.e., PRL, LH and GH, whereas it inhibits the secretion of POMC/α-MSH from the intermediate pituitary and of oxytocin from the posterior pituitary. D-Asp also acts as a negative regulator for melatonin synthesis in the pineal gland. Further, D-Asp can stereo-specifically modulate the production of sex steroids, thus taking part in the endocrine control of reproductive activity. Although D-Asp receptors remain to be characterized, gene expression of NR1 and NR2 subunits of NMDAr responds to D-Asp in the testis.


Assuntos
Ácido D-Aspártico/farmacocinética , Glândulas Endócrinas/metabolismo , Glândulas Exócrinas/metabolismo , Isomerases de Aminoácido/metabolismo , Animais , D-Aspartato Oxidase/metabolismo , Glândula de Harder/metabolismo , Humanos , Melatonina/biossíntese , Glândula Parótida/metabolismo , Glândula Pineal/metabolismo , Adeno-Hipófise Parte Intermédia/metabolismo , Neuro-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Glândulas Salivares/metabolismo
17.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534366

RESUMO

Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) mediate the communication between the Endoplasmic Reticulum (ER) and the mitochondria, playing a fundamental role in steroidogenesis. This study aimed to understand how D-aspartate (D-Asp), a well-known stimulator of testosterone biosynthesis and spermatogenesis, affects the mechanism of steroidogenesis in rat testes. Our results suggested that D-Asp exerts this function through MAMs, affecting lipid trafficking, calcium signaling, ER stress, and mitochondrial dynamics. After 15 days of oral administration of D-Asp to rats, there was an increase in both antioxidant enzymes (SOD and Catalase) and in the protein expression levels of ATAD3A, FACL4, and SOAT1, which are markers of lipid transfer, as well as VDAC and GRP75, which are markers of calcium signaling. Additionally, there was a decrease in protein expression levels of GRP78, a marker of aging that counteracts ER stress. The effects of D-Asp on mitochondrial dynamics strongly suggested its active role as well. It induced the expression levels of proteins involved in fusion (MFN1, MFN2, and OPA1) and in biogenesis (NRF1 and TFAM), as well as in mitochondrial mass (TOMM20), and decreased the expression level of DRP1, a crucial mitochondrial fission marker. These findings suggested D-Asp involvement in the functional improvement of mitochondria during steroidogenesis. Immunofluorescent signals of ATAD3A, MFN1/2, TFAM, and TOMM20 confirmed their localization in Leydig cells showing an intensity upgrade in D-Asp-treated rat testes. Taken together, our results demonstrate the involvement of D-Asp in the steroidogenesis of rat testes, acting at multiple stages of both MAMs and mitochondrial dynamics, opening new opportunities for future investigation in other steroidogenic tissues.


Assuntos
Dinâmica Mitocondrial , Membranas Mitocondriais , Masculino , Ratos , Animais , Membranas Mitocondriais/metabolismo , Ácido D-Aspártico/farmacologia , Testículo/metabolismo , Regulação para Cima , Ácido Aspártico , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Lipídeos/farmacologia
18.
Gen Comp Endocrinol ; 181: 72-6, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23153651

RESUMO

There is evidence that D-aspartate (D-Asp) modulates sex hormone levels in frog testis by regulating the activity of P450 aromatase (P450 aro), the key enzyme which converts Testosterone (T) in 17ß-Estradiol (E2). Here we report, for the first time, that there is a direct correlation among brain levels of D-Asp, P450 aro, E2 and Estradiol Receptor (ERα) in the male frogs during the reproductive as well as the post-reproductive phases of the breeding cycle, with highest levels being observed in the post-reproductive period. D-Asp i.p. administration to frogs ready for reproduction, induced an increase of brain P450 aro protein expression with concomitant enhancement of both E2 levels and ERα expression; at the same time, brain T levels and Androgen receptor expression decreased. In contrast, in the post-reproductive frogs, D-Asp treatment did not modify any of these parameters. Taken together, these results imply that the regulation of P450 aro expression by D-Asp could be an important step in the control of E2 levels in the frog brain.


Assuntos
Anuros/metabolismo , Encéfalo/metabolismo , Ácido D-Aspártico/metabolismo , Esteroides/metabolismo , Animais , Aromatase/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Masculino , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo
19.
Biomolecules ; 13(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37189369

RESUMO

High levels of free D-aspartate (D-Asp) are present in vertebrate testis during post-natal development, coinciding with the onset of testosterone production, which suggests that this atypical amino acid might participate in the regulation of hormone biosynthesis. To elucidate the unknown role of D-Asp on testicular function, we investigated steroidogenesis and spermatogenesis in a one-month-old knockin mouse model with the constitutive depletion of D-Asp levels due to the targeted overexpression of D-aspartate oxidase (DDO), which catalyzes the deaminative oxidation of D-Asp to generate the corresponding α-keto acid, oxaloacetate, hydrogen peroxide, and ammonium ions. In the Ddo knockin mice, we found a dramatic reduction in testicular D-Asp levels, accompanied by a significant decrease in the serum testosterone levels and testicular 17ß-HSD, the enzyme involved in testosterone biosynthesis. Additionally, in the testes of these Ddo knockin mice, the expression of PCNA and SYCP3 proteins decreased, suggesting alterations in spermatogenesis-related processes, as well as an increase in the cytosolic cytochrome c protein levels and TUNEL-positive cell number, which indicate an increase in apoptosis. To further investigate the histological and morphometric testicular alterations in Ddo knockin mice, we analyzed the expression and localization of prolyl endopeptidase (PREP) and disheveled-associated activator of morphogenesis 1 (DAAM1), two proteins involved in cytoskeletal organization. Our results showed that the testicular levels of DAAM1 and PREP in Ddo knockin mice were different from those in wild-type animals, suggesting that the deficiency of D-Asp is associated with overall cytoskeletal disorganization. Our findings confirmed that physiological D-Asp influences testosterone biosynthesis and plays a crucial role in germ cell proliferation and differentiation, which are required for successful reproduction.


Assuntos
Ácido Aspártico , Ácido D-Aspártico , Masculino , Camundongos , Animais , Ácido Aspártico/metabolismo , Ácido D-Aspártico/metabolismo , Espermatogênese , Testículo/metabolismo , Testosterona , Prolil Oligopeptidases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
20.
J Exp Zool A Ecol Integr Physiol ; 339(6): 535-544, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37009779

RESUMO

The epididymis plays an essential role in reproduction, promoting sperm cell maturation. In this study, we investigated the effects of a high-fat diet (HFD) in the three regions of the epididymis of rats, including caput, corpus, and cauda. Our results showed an increase in malondialdehyde and a decrease in superoxide dismutase, which indicated an increase in oxidative stress in all segments of the epididymis. The cellular response mechanisms were mostly detected in the corpus/cauda regions, which showed an increase in apoptosis, probably for eliminating dysfunctional cells arising from HFD-induced oxidative stress, and a decrease in mitophagy. Additionally, an increase in lipophagy to prevent lipid accumulation and a decrease in cell proliferation were recorded in the corpus.


Assuntos
Sêmen , Espermatozoides , Ratos , Masculino , Animais , Espermatozoides/fisiologia , Epididimo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA