Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614168

RESUMO

Different molecular mechanisms contribute to the development of multidrug resistance in cancer, including increased drug efflux, enhanced cellular repair mechanisms and alterations of drug metabolism or drug targets. ABCG2 is a member of the ATP-binding cassette superfamily transporters that promotes drug efflux, inducing chemotherapeutic resistance in malignant cells. In this context, the development of selective ABCG2 inhibitors might be a suitable strategy to improve chemotherapy efficacy. Thus, through a multidisciplinary approach, we identified a new ABCG2 selective inhibitor (8), highlighting its ability to increase mitoxantrone cytotoxicity in both hepatocellular carcinoma (EC50from 8.67 ± 2.65 to 1.25 ± 0.80 µM) and transfected breast cancer cell lines (EC50from 9.92 ± 2.32 to 2.45 ± 1.40 µM). Moreover, mitoxantrone co-administration in both transfected and non-transfected HEK293 revealed that compound 8 notably lowered the mitoxantrone EC50, demonstrating its efficacy along with the importance of the ABCG2 extrusion pump overexpression in MDR reversion. These results were corroborated by evaluating the effect of inhibitor 8 on mitoxantrone cell uptake in multicellular tumor spheroids and via proteomic experiments.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Mitoxantrona/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteômica
2.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502335

RESUMO

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.


Assuntos
Antivirais/farmacologia , Simulação de Acoplamento Molecular , Oligopeptídeos/química , Peptídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Sítios de Ligação , COVID-19/virologia , Domínio Catalítico , Linhagem Celular , Citomegalovirus/efeitos dos fármacos , Reposicionamento de Medicamentos , Herpesvirus Humano 3/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Tratamento Farmacológico da COVID-19
3.
J Nat Prod ; 82(10): 2768-2779, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31618025

RESUMO

Garcinol, a polyisoprenylated benzophenone isolated from Garcinia genus, has been reported to inhibit eukaryotic topoisomerase I and topoisomerase II at concentrations comparable to that of etoposide (∼25-100 µM). With the aim to clarify the underlying molecular mechanisms by which garcinol inhibits human topoisomerase IIα and topoisomerase IIß, biochemical assays along with molecular docking and molecular dynamics studies were carried out on garcinol and six congeners. The biochemical results revealed that garcinol derivatives appear to act as catalytic inhibitors of topoisomerase II and to inhibit ATP hydrolysis by topoisomerase II via some form of mixed inhibition. The computational investigation identified the structural elements responsible for binding to the biological target and also provided information for the eventual design of more selective and potent analogues. Collectively, our data suggest that garcinol-type agents may bind to the DNA binding surface and/or ATP domain of type II topoisomerases to antagonize function.


Assuntos
Benzofenonas/farmacologia , Garcinia/química , Simulação de Acoplamento Molecular , Terpenos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Benzofenonas/química , Benzofenonas/isolamento & purificação , Modelos Moleculares , Prenilação , Terpenos/química , Terpenos/isolamento & purificação , Inibidores da Topoisomerase II/química
4.
Bioorg Med Chem ; 26(14): 3953-3957, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934219

RESUMO

The natural product magnolol (1) and a selection of its bioinspired derivatives 2-5, were investigated by Inverse Virtual Screening in order to identify putative biological targets from a panel of 308 proteins involved in cancer processes. By this in silico analysis we selected tankyrase-2 (TNKS2), casein kinase 2 (CK2) and bromodomain 9 (Brd9) as potential targets for experimental evaluations. The Surface Plasmon Resonance assay revealed that 3-5 present a good affinity for tankyrase-2, and, in particular, 3 showed an antiproliferative activity on A549 cells higher than the well-known tankyrase-2 inhibitor XAV939 used as reference compound.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Tanquirases/antagonistas & inibidores , Algoritmos , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lignanas/síntese química , Lignanas/química , Estrutura Molecular , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Tanquirases/metabolismo , Termodinâmica , Células Tumorais Cultivadas
5.
Magn Reson Chem ; 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30421826

RESUMO

Mono- and di-bromo derivatives of triimidazo[1,2-a:1',2'-c:1″,2″-e][1,3,5]triazine have been proposed as new organic molecules presenting a very rich and complex photophysical behavior. Thus, we afforded the correct chemical shift assignment by integrating the experimental data with DFT calculation of NMR parameters. Our findings lay foundation for a structural reference in the organic synthesis and characterization of new congeners of this intriguing class of molecules.

6.
Bioorg Med Chem ; 24(4): 820-6, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26777299

RESUMO

2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Antineoplásicos/síntese química , Benzofuranos/síntese química , Inibidores Enzimáticos/síntese química , Microssomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Motivos de Aminoácidos , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Expressão Gênica , Humanos , Concentração Inibidora 50 , Oxirredutases Intramoleculares , Microssomos/enzimologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Prostaglandina-E Sintases , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Relação Estrutura-Atividade
7.
Org Biomol Chem ; 12(17): 2686-701, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24647864

RESUMO

In this work twelve benzo[k,l]xanthene lignans were synthesized by biomimetic, Mn-mediated oxidative coupling of caffeic esters and amides. These compounds, bearing different flexible pendants at position C1/C2 of the aromatic core, interact with DNA in a dual mode, as confirmed by DF-STD NMR analysis and molecular docking: the planar core acts as a base pair intercalant, whereas the flexible pendants act as minor groove binders. Their antiproliferative activity was evaluated on a panel of six tumor cell lines: HT-29, Caco-2, HCT-116 (human colon carcinoma), H226, A549 (human lung carcinoma), and SH-SY5Y (human neuroblastoma). All compounds under study, except 29, resulted in activity against one or more cell lines, and the markedly lipophilic esters 13 and 28 showed the highest activity. Compound 13 was more active than the anticancer drug 5-fluorouracil (5-FU) towards HCT-116 (colon, GI50 = 3.16 µM) and H226 (lung, GI50 = 4.33 µM) cell lines.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Lignanas/síntese química , Lignanas/farmacologia , Xantenos/química , Amidas/química , Ácidos Cafeicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Xantenos/síntese química , Xantenos/farmacologia
8.
J Nat Prod ; 77(3): 543-9, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24417609

RESUMO

Garcinol (1), a polyisoprenylated benzophenone occurring in Garcinia species, has been reported to exert anti-inflammatory activity in LPS-stimulated macrophages, through inhibition of NF-κB and/or JAK/STAT-1 activation. In order to provide deeper insight into its effects on the cytokine signaling pathway and to clarify the underlying molecular mechanisms, 1 was isolated from the fruits of Garcinia cambogia along with two other polyisoprenylated benzophenones, guttiferones K (2) and guttiferone M (3), differing from each other in their isoprenyl moieties and their positions on the benzophenone core. The affinities of 1-3 for the STAT-1 protein have been evaluated by surface plasmon resonance and molecular docking studies and resulted in KD values in the micromolar range. Consistent with the observed high affinity toward the STAT-1 protein, garcinol and guttiferones K and M were able to modulate cytokine signaling in different cultured cell lines, mainly by inhibiting STAT-1 nuclear transfer and DNA binding, as assessed by an electrophorectic mobility shift assay.


Assuntos
Benzofenonas/isolamento & purificação , Benzofenonas/farmacologia , Garcinia cambogia/química , Macrófagos/efeitos dos fármacos , Fator de Transcrição STAT1/efeitos dos fármacos , Terpenos/química , Terpenos/farmacologia , Benzofenonas/química , Northern Blotting , Feminino , Frutas/química , Humanos , Lipopolissacarídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Conformação Molecular , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sri Lanka , Terpenos/isolamento & purificação
9.
Eur J Med Chem ; 269: 116298, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493727

RESUMO

The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.


Assuntos
Canabinoides , Receptor CB2 de Canabinoide , Camundongos , Animais , Pirróis/farmacologia , Canabinoides/farmacologia , Neurotransmissores/farmacologia , Derivados da Escopolamina , Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB1 de Canabinoide
10.
Bioorg Med Chem ; 21(13): 3795-807, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23693069

RESUMO

Histone Deacetylases are considered promising targets for cancer epigenetic therapy, and small molecules able to modulate their biological function have recently gained an increasing interest as potential anticancer agents. In spite of their potential application in cancer therapy, most HDAC inhibitors unselectively bind the several HDAC isoforms, giving rise to different side-effects. In this context, we have traced out the structural elements responsible of selective binding for the therapeutically relevant different HDAC isoforms. The structural analysis has been carried out by molecular modeling, docking in the binding pockets of HDAC1-4 and HDAC6-8, 36 inhibitors presenting a well defined selectivity for the different isoforms. As quick proof of evidence, we have designed, synthesized and experimentally tested three selective ligands. The experimental data suggest that the obtained structural guidelines can be useful tools for the rational design of new potent inhibitors against selected HDAC isoforms.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/síntese química , Histona Desacetilases/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade
11.
Beilstein J Org Chem ; 9: 2940-9, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24454574

RESUMO

In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of (13)C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of (13)C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

12.
J Med Chem ; 66(13): 9201-9222, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37334504

RESUMO

Acute pancreatitis (AP) is a potentially life-threatening illness characterized by an exacerbated inflammatory response with limited options for pharmacological treatment. Here, we describe the rational development of a library of soluble epoxide hydrolase (sEH) inhibitors for the treatment of AP. Synthesized compounds were screened in vitro for their sEH inhibitory potency and selectivity, and the results were rationalized by means of molecular modeling studies. The most potent compounds were studied in vitro for their pharmacokinetic profile, where compound 28 emerged as a promising lead. In fact, compound 28 demonstrated a remarkable in vivo efficacy in reducing the inflammatory damage in cerulein-induced AP in mice. Targeted metabololipidomic analysis further substantiated sEH inhibition as a molecular mechanism of the compound underlying anti-AP activity in vivo. Finally, pharmacokinetic assessment demonstrated a suitable profile of 28 in vivo. Collectively, compound 28 displays strong effectiveness as sEH inhibitor with potential for pharmacological AP treatment.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Epóxido Hidrolases , Doença Aguda , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/farmacocinética
13.
Mol Inform ; 41(12): e2200140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36075865

RESUMO

A deep in silico investigation of various microsomal prostaglandin E2 synthase-1 (mPGES-1) protein systems is here reported using molecular dynamics (MD) simulations. Firstly, eight different proteins models (Models A-H) were built, starting from the active enzyme trimer system (Model A), namely that bound to three glutathione (GSH) cofactor molecules, and then gradually removing the GSHs (Models B-H), simulating each of them for 100 ns in explicit solvent. The analysis of the obtained data disclosed the structural role of GSH in the chemical architecture of mPGES-1 enzyme, thus suggesting the unlikely displacement of this cofactor, in accordance with experimentally determined protein structures co-complexed with small molecule inhibitors. Afterwards, Model A was submitted to microsecond-scale molecular dynamics simulation (total simulation time=10 µs), in order to shed light about the dynamical behaviour of this enzyme at atomic level and to obtain further structural features and protein function information. We confirmed the structural stability of the enzyme machinery, observing a conformational rigidity of the protein, with a backbone RMSD of ∼3 Šalong the simulation time, and highlighting the strong active contribution of GSH molecules due to their active role in packing the protein chains through a tight binding at monomer interfaces. Furthermore, the focused analysis on R73 residue disclosed its role in solvent exchange events, probably excluding its function as route for GSH to enter towards the endoplasmic reticulum membrane, in line with the recently reported function of cap domain residues F44-D66 as gatekeeper for GSH entrance into catalytic site.


Assuntos
Glutationa , Simulação de Dinâmica Molecular
14.
Eur J Med Chem ; 244: 114857, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332548

RESUMO

Although vaccines are greatly mitigating the worldwide pandemic diffusion of SARS-Cov-2, therapeutics should provide many distinct advantages as complementary approach to control the viral spreading. Here, we report the development of new tripeptide derivatives of AT1001 against SARS-CoV-2 Mpro. By molecular modeling, a small compound library was rationally designed and filtered for enzymatic inhibition through FRET assay, leading to the identification of compound 4. X-ray crystallography studies provide insights into its binding mode and confirm the formation of a covalent bond with Mpro C145. In vitro antiviral tests indicate the improvement of biological activity of 4 respect to AT1001. In silico and X-ray crystallography analysis led to 58, showing a promising activity against three SARS-CoV-2 variants and a valuable safety in Vero cells and human embryonic lung fibroblasts. The drug tolerance was also confirmed by in vivo studies, along with pharmacokinetics evaluation. In summary, 58 could pave the way to develop a clinical candidate for intranasal administration.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Animais , Humanos , Proteases 3C de Coronavírus , Células Vero , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
16.
ChemMedChem ; 17(22): e202200327, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36111583

RESUMO

We identified 2,4-dinitro-biphenyl-based compounds as new inhibitors of leukotriene C4 synthase (LTC4 S) and 5-lipoxygenase-activating protein (FLAP), both members of the "Membrane Associated Proteins in Eicosanoid and Glutathione metabolism" (MAPEG) family involved in the biosynthesis of pro-inflammatory eicosanoids. By molecular docking we evaluated the putative binding against the targets of interest, and by applying cell-free and cell-based assays we assessed the inhibition of LTC4 S and FLAP by the small molecules at low micromolar concentrations. The present results integrate the previously observed inhibitory profile of the tested compounds against another MAPEG member, i. e., microsomal prostaglandin E2 synthase (mPGES)-1, suggesting that the 2,4-dinitro-biphenyl scaffold is a suitable molecular platform for a multitargeting approach to modulate pro-inflammatory mediators in inflammation and cancer treatment.


Assuntos
Compostos de Bifenilo , Glutationa Transferase , Simulação de Acoplamento Molecular , Proteínas Ativadoras de 5-Lipoxigenase , Compostos de Bifenilo/farmacologia , Prostaglandina-E Sintases/metabolismo
17.
J Med Chem ; 65(21): 14456-14480, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318728

RESUMO

The design of multitarget drugs represents a promising strategy in medicinal chemistry and seems particularly suitable for the discovery of anti-inflammatory drugs. Here, we describe the identification of an indoline-based compound inhibiting both 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH). In silico analysis of an in-house library identified nine compounds as potential 5-LOX inhibitors. Enzymatic and cellular assays revealed the indoline derivative 43 as a notable 5-LOX inhibitor, guiding the design of new analogues. These compounds underwent extensive in vitro investigation revealing dual 5-LOX/sEH inhibitors, with 73 showing the most promising activity (IC50s of 0.41 ± 0.01 and 0.43 ± 0.10 µM for 5-LOX and sEH, respectively). When challenged in vivo in zymosan-induced peritonitis and experimental asthma in mice, compound 73 showed remarkable anti-inflammatory efficacy. These results pave the way for the rational design of 5-LOX/sEH dual inhibitors and for further investigation of their potential use as anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Epóxido Hidrolases , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Indóis/farmacologia , Indóis/uso terapêutico , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Inibidores de Lipoxigenase/química
18.
Org Biomol Chem ; 9(3): 701-10, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21079866

RESUMO

The biological properties and possible pharmacological applications of benzo[kl]xanthene lignans, rare among natural products and synthetic compounds, are almost unexplored. In the present contribution, the possible interaction of six synthetic benzo[kl]xanthene lignans and the natural metabolite rufescidride with DNA has been investigated through a combined STD-NMR and molecular docking approach, paralleled by in vitro biological assays on their antiproliferative activity towards two different cancer cell lines: SW 480 and HepG2. Our data suggest that the benzo[kl]xanthene lignans are suitable lead compounds for the design of DNA selective ligands with potential antitumour properties.


Assuntos
Antinematódeos/química , DNA/química , Lignanas/química , Conformação de Ácido Nucleico , Xantenos/química , Antinematódeos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Lignanas/farmacologia , Modelos Moleculares , Relação Estrutura-Atividade , Xantenos/farmacologia
19.
Curr Med Chem ; 28(32): 6704-6728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33176630

RESUMO

Artificial intelligence methods, in particular, machine learning, has been playing a pivotal role in drug development, from structural design to the clinical trial. This approach is harnessing the impact of computer-aided drug discovery due to large available data sets for drug candidates and its new and complex manner of information interpretation to identify patterns for the study scope. In the present review, recent applications related to drug discovery and therapies are assessed, and limitations and future perspectives are analyzed.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Desenvolvimento de Medicamentos , Humanos , Aprendizado de Máquina
20.
Front Chem ; 9: 676631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046398

RESUMO

We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA