Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445255

RESUMO

One of the most important features of striated cardiac muscle is the excitability that turns on the excitation-contraction coupling cycle, resulting in the heart blood pumping function. The function of the heart pump may be impaired by events such as myocardial infarction, the consequence of coronary artery thrombosis due to blood clots or plaques. This results in the death of billions of cardiomyocytes, the formation of scar tissue, and consequently impaired contractility. A whole heart transplant remains the gold standard so far and the current pharmacological approaches tend to stop further myocardium deterioration, but this is not a long-term solution. Electrically conductive, scaffold-based cardiac tissue engineering provides a promising solution to repair the injured myocardium. The non-conductive component of the scaffold provides a biocompatible microenvironment to the cultured cells while the conductive component improves intercellular coupling as well as electrical signal propagation through the scar tissue when implanted at the infarcted site. The in vivo electrical coupling of the cells leads to a better regeneration of the infarcted myocardium, reducing arrhythmias, QRS/QT intervals, and scar size and promoting cardiac cell maturation. This review presents the emerging applications of intrinsically conductive polymers in cardiac tissue engineering to repair post-ischemic myocardial insult.


Assuntos
Arritmias Cardíacas , Materiais Biocompatíveis , Condutividade Elétrica , Infarto do Miocárdio , Miocárdio/metabolismo , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/terapia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Engenharia Tecidual
2.
J Cell Mol Med ; 24(5): 2704-2716, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31568640

RESUMO

Regenerative therapies including stem cell treatments hold promise to allow curing patients affected by severe cardiac muscle diseases. However, the clinical efficacy of stem cell therapy remains elusive, so far. The two key roadblocks that still need to be overcome are the poor cell engraftment into the injured myocardium and the limited knowledge of the ideal mixture of bioactive factors to be locally delivered for restoring heart function. Thus, therapeutic strategies for cardiac repair are directed to increase the retention and functional integration of transplanted cells in the damaged myocardium or to enhance the endogenous repair mechanisms through cell-free therapies. In this context, biomaterial-based technologies and tissue engineering approaches have the potential to dramatically impact cardiac translational medicine. This review intends to offer some consideration on the cell-based and cell-free cardiac therapies, their limitations and the possible future developments.


Assuntos
Miocárdio/patologia , Medicina Regenerativa/métodos , Animais , Microambiente Celular , Humanos , Regeneração , Transplante de Células-Tronco , Alicerces Teciduais/química
3.
Curr Opin Organ Transplant ; 24(5): 604-612, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31433307

RESUMO

PURPOSE OF REVIEW: The current review summarizes contemporary decellularization and hydrogel manufacturing strategies in the field of tissue engineering and regenerative medicine. RECENT FINDINGS: Decellularized extracellular matrix (ECM) bioscaffolds are a valuable biomaterial that can be purposed into various forms of synthetic tissues such as hydrogels. ECM-based hydrogels can be of animal or human origin. The use of human tissues as a source for ECM hydrogels in the clinical setting is still in its infancy and current literature is scant and anecdotal, resulting in inconclusive results. SUMMARY: Thus far the methods used to obtain hydrogels from human tissues remains a work in progress. Gelation, the most complex technique in obtaining hydrogels, is challenging due to remarkable heterogeneity of the tissues secondary to interindividual variability. Age, sex, ethnicity, and preexisting conditions are factors that dramatically undermine the technical feasibility of the gelation process. This is contrasted with animals whose well defined anatomical and histological characteristics have been selectively bred for the goal of manufacturing hydrogels.


Assuntos
Materiais Biocompatíveis/química , Matriz Extracelular/química , Hidrogéis/química , Medicina Regenerativa , Engenharia Tecidual/métodos , Animais , Humanos , Alicerces Teciduais
4.
Int J Med Sci ; 13(3): 206-19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941581

RESUMO

BACKGROUND: Diets enriched with n-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to exert a positive impact on muscle diseases. Flaxseed is one of the richest sources of n-3 PUFA acid α-linolenic acid (ALA). The aim of this study was to assess the effects of flaxseed and ALA in models of skeletal muscle degeneration characterized by high levels of Tumor Necrosis Factor-α (TNF). METHODS: The in vivo studies were carried out on dystrophic hamsters affected by muscle damage associated with high TNF plasma levels and fed with a long-term 30% flaxseed-supplemented diet. Differentiating C2C12 myoblasts treated with TNF and challenged with ALA represented the in vitro model. Skeletal muscle morphology was scrutinized by applying the Principal Component Analysis statistical method. Apoptosis, inflammation and myogenesis were analyzed by immunofluorescence. Finally, an in silico analysis was carried out to predict the possible pathways underlying the effects of n-3 PUFAs. RESULTS: The flaxseed-enriched diet protected the dystrophic muscle from apoptosis and preserved muscle myogenesis by increasing the myogenin and alpha myosin heavy chain. Moreover, it restored the normal expression pattern of caveolin-3 thereby allowing protein retention at the sarcolemma. ALA reduced TNF-induced apoptosis in differentiating myoblasts and prevented the TNF-induced inhibition of myogenesis, as demonstrated by the increased expression of myogenin, myosin heavy chain and caveolin-3, while promoting myotube fusion. The in silico investigation revealed that FAK pathways may play a central role in the protective effects of ALA on myogenesis. CONCLUSIONS: These findings indicate that flaxseed may exert potent beneficial effects by preserving skeletal muscle regeneration and homeostasis partly through an ALA-mediated action. Thus, dietary flaxseed and ALA may serve as a useful strategy for treating patients with muscle dystrophies.


Assuntos
Linho , Músculo Esquelético/fisiologia , Regeneração/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Cricetinae , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Masculino , Mesocricetus , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/dietoterapia , Distrofia Muscular Animal/fisiopatologia , Mioblastos Esqueléticos/efeitos dos fármacos , Regeneração/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Ácido alfa-Linolênico/farmacologia
5.
Materials (Basel) ; 16(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36837169

RESUMO

Electrospinning bears great potential for the manufacturing of scaffolds for tissue engineering, consisting of a porous mesh of ultrafine fibers that effectively mimic the extracellular matrix (ECM) and aid in directing stem cell fate. However, for engineering purposes, there is a need to develop material-by-design approaches based on predictive models. In this methodological study, a rational methodology based on statistical design of experiments (DOE) is discussed in detail, yielding heuristic models that capture the linkage between process parameters (Xs) of the electrospinning and scaffold properties (Ys). Five scaffolds made of polycaprolactone are produced according to a 22-factorial combinatorial scheme where two Xs, i.e., flow rate and applied voltage, are varied between two given levels plus a center point. The scaffolds were characterized to measure a set of properties (Ys), i.e., fiber diameter distribution, porosity, wettability, Young's modulus, and cell adhesion on murine myoblast C1C12 cells. Simple engineering DOE models were obtained for all Ys. Each Y, for example, the biological response, can be used as a driver for the design process, using the process-property model of interest for accurate interpolation within the design domain, enabling a material-by-design strategy and speeding up the product development cycle. The implications are also illustrated in the context of the design of multilayer scaffolds with microstructural gradients and controlled properties of each layer. The possibility of obtaining statistical models correlating between diverse output properties of the scaffolds is highlighted. Noteworthy, the featured DOE approach can be potentially merged with artificial intelligence tools to manage complexity and it is applicable to several fields including 3D printing.

6.
Sci Rep ; 13(1): 2863, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36804588

RESUMO

Electrically conductive scaffolds, mimicking the unique directional alignment of muscle fibers in the myocardium, are fabricated using the 3D printing micro-stereolithography technique. Polyethylene glycol diacrylate (photo-sensitive polymer), Irgacure 819 (photo-initiator), curcumin (dye) and polyaniline (conductive polymer) are blended to make the conductive ink that is crosslinked using free radical photo-polymerization reaction. Curcumin acts as a liquid filter and prevents light from penetrating deep into the photo-sensitive solution and plays a central role in the 3D printing process. The obtained scaffolds demonstrate well defined morphology with an average pore size of 300 ± 15 µm and semi-conducting properties with a conductivity of ~ 10-6 S/m. Cyclic voltammetry analyses detect the electroactivity and highlight how the electron transfer also involve an ionic diffusion between the polymer and the electrolyte solution. Scaffolds reach their maximum swelling extent 30 min after immersing in the PBS at 37 °C and after 4 weeks they demonstrate a slow hydrolytic degradation rate typical of polyethylene glycol network. Conductive scaffolds display tunable conductivity and provide an optimal environment to the cultured mouse cardiac progenitor cells.


Assuntos
Curcumina , Engenharia Tecidual , Camundongos , Animais , Engenharia Tecidual/métodos , Curcumina/metabolismo , Miócitos Cardíacos/metabolismo , Polímeros/química , Polietilenoglicóis/metabolismo , Impressão Tridimensional , Alicerces Teciduais/química
7.
J Biol Chem ; 286(31): 27092-102, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21659508

RESUMO

Polyunsaturated fatty acids (PUFAs) inhibit proliferation and induce differentiation in leukemia cells. To investigate the molecular mechanisms whereby fatty acids affect these processes, U937 leukemia cells were conditioned with stearic, oleic, linolenic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acids. PUFAs affected proliferation; eicosapentaenoic acid (EPA) was the most potent on cell cycle progression. EPA enhanced the expression of the myeloid lineage-specific transcription factors CCAAT/enhancer-binding proteins (C/EBPß and C/EBPδ), PU.1, and c-Jun, resulting in increased expression of the monocyte lineage-specific target gene, the macrophage colony-stimulating factor receptor. Indeed, it is known that PU.1 and C/EBPs interact with their consensus sequences on a small DNA fragment of macrophage colony-stimulating factor receptor promoter, which is a determinant for expression. We demonstrated that C/EBPß and C/EBPδ bind the same response element as a heterodimer. We focused on the enhanced expression of C/EBPδ, which has been reported to be a tumor suppressor gene silenced by promoter hypermethylation in U937 cells. After U937 conditioning with EPA and bisulfite sequencing of the -370/-20 CpG island on the C/EBPδ promoter region, we found a site-specific CpG demethylation that was a determinant for the binding activity of Sp1, an essential factor for C/EBPδ gene basal expression. Our results provide evidence for a new role of PUFAs in the regulation of gene expression. Moreover, we demonstrated for the first time that re-expression of the tumor suppressor C/EBPδ is controlled by the methylation state of a site-specific CpG dinucleotide.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Oncogenes , Sequência de Bases , Proteína delta de Ligação ao Facilitador CCAAT/genética , Imunoprecipitação da Cromatina , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase , Células U937
8.
Stem Cells ; 29(11): 1738-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21898691

RESUMO

In Krabbe's disease, a demyelinating disorder, add-on strategies targeting the peripheral nervous system (PNS) are needed, as it is not corrected by bone-marrow (BM) transplantation. To circumvent this limitation of BM transplantation, we assessed whether i.v. delivery of immortalized EGFP(+) BM-derived murine mesenchymal stromal cells (BM-MSC(TERT-EGFP) ) targets the PNS of a Krabbe's disease model, the Twitcher mouse. In vitro, BM-MSC(TERT-EGFP) retained the phenotype of primary BM-MSC and did not originate tumors upon transplantation in nude mice. In vivo, undifferentiated EGFP(+) cells grafted the Twitcher sciatic nerve where an increase in Schwann cell precursors and axonal number was detected. The same effect was observed on BM-MSC(TERT-EGFP) i.v. delivery following sciatic nerve crush, a model of axonal regeneration. Reiterating the in vivo findings, in a coculture system, BM-MSC(TERT-EGFP) induced the proliferation of Twitcher-derived Schwann cells and the neurite outgrowth of both Twitcher-derived neurons and wild-type neurons grown in the presence of psychosine, the toxic substrate that accumulates in Krabbe's disease. In vitro, this neuritogenic effect was blocked by K252a, an antagonist of Trk receptors, and by antibody blockage of brain derived neurotrophic factor, a neurotrophin secreted by BM-MSC(TERT-EGFP) and induced in neighboring Schwann cells. In vivo, BM-MSC(TERT-EGFP) surmounted the effect of K252a, indicating their ability to act through a neurotrophin-independent mechanism. In summary, i.v. delivery of BM-MSC(TERT-EGFP) exerts a multilevel effect targeting neurons and Schwann cells, coordinately diminishing neuropathology. Therefore, to specifically target the PNS, MSC should be considered an add-on option to BM transplantation in Krabbe's disease and in other disorders where peripheral axonal loss occurs.


Assuntos
Células da Medula Óssea/citologia , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Western Blotting , Carbazóis/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Imuno-Histoquímica , Alcaloides Indólicos/farmacologia , Leucodistrofia de Células Globoides/genética , Camundongos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nervo Isquiático/lesões
9.
Stem Cells ; 29(12): 2051-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22009661

RESUMO

Human heart harbors a population of resident progenitor cells that can be isolated by stem cell antigen-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, less than 1%-5% survive and differentiate. Among the major causes of this failure are the distressing protocols used to culture in vitro and implant progenitor cells into damaged hearts. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and were embedded in self-produced extracellular matrix preserving their phenotype and multipotency in the absence of significant apoptosis. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the murine myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such an approach to deliver stem cells to the myocardium. Interestingly, the successful delivery of cells in murine healthy hearts suggests that myocardium displays a continued cell cupidity that is strictly regulated by the limited release of progenitor cells by the adopted source. When an unregulated cell source is added to the system, cells are delivered to the myocardium. The exploitation of this novel concept may pave the way to the setup of new protocols in cardiac cell therapy.


Assuntos
Ventrículos do Coração/transplante , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular , Movimento Celular , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Fenótipo , Transplante de Tecidos/métodos
10.
Can J Physiol Pharmacol ; 90(3): 273-4, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22338594

RESUMO

The actual repairing power of stem cells has yet to be fully realized because of insufficient knowledge about the basic mechanisms regulating their fate and unsuitable protocols to implant them in injured tissues. Novel strategies must be formulated to fully exploit stem cell potential in the clinical setting.


Assuntos
Transplante de Células-Tronco , Humanos
11.
Micromachines (Basel) ; 13(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630247

RESUMO

Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.

12.
Front Bioeng Biotechnol ; 10: 1015628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263358

RESUMO

Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.

13.
Am J Pathol ; 177(5): 2176-84, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20829440

RESUMO

Currently, despite well-known mutational causes, a universal treatment for neuromuscular disorders is still lacking, and current therapeutic efforts are mainly restricted to symptomatic treatments. In the present study, δ-sarcoglycan-null dystrophic hamsters were fed a diet enriched in flaxseed-derived ω3 α-linolenic fatty acid from weaning until death. α-linolenic fatty acid precluded the dystrophic degeneration of muscle morphology and function. In fact, in dystrophic animals fed flaxseed-derived α-linolenic fatty acid, the histological appearance of the muscular tissue was improved, the proliferation of interstitial cells was decreased, and the myogenic differentiation originated new myocytes to repair the injured muscle. In addition, muscle myofibers were larger and cell membrane integrity was preserved, as witnessed by the correct localization of α-, ß-, and γ-sarcoglycans and α-dystroglycan. Furthermore, the cytoplasmic accumulation of both ß-catenin and caveolin-3 was abolished in dystrophic hamster muscle fed α-linolenic fatty acid versus control animals fed standard diet, while α-myosin heavy chain was expressed at nearly physiological levels. These findings, obtained by dietary intervention only, introduce a novel concept that provides evidence that the modulation of the plasmalemma lipid profile could represent an efficacious strategy to ameliorate human muscular dystrophy.


Assuntos
Dieta , Gorduras na Dieta/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Animais , Diferenciação Celular , Proliferação de Células , Cricetinae , Linho/química , Humanos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Transdução de Sinais/fisiologia
14.
Mol Cell Biochem ; 347(1-2): 29-39, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20938723

RESUMO

Hind limb-suspended rats represent a sedentary-hyperinsulinemic model with a liver dyslipidemia mainly related to changes in sterol regulatory element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor-α (PPARα) expression and activity. To assess the effects of dietary fatty acids on hepatic lipid homeostasis, the hepatic expression and activity of PPARα, SREBP-1, and hepatocyte nuclear factor-4α (HNF-4α) were investigated in this animal model. In control and sedentary rats, diets enriched with saturated, monounsaturated, and polyunsaturated fatty acids (PUFA) enhanced the expression of the PPARα target genes carnitine palmitoyltransferase 1 and acyl-CoA oxidase, the highest effect being exerted by ω-3. The same diets reduced SREBP-1 mRNA and target lipogenic gene expression, as indicated by the reduction in fatty acid synthase and acetyl-CoA carboxylase mRNA content. Effects were greater in sedentary rat liver than in controls on the same diet. Only the ω-3 enriched diet decreased liver triglyceride content as well as plasma cholesterol and triglyceride levels in sedentary rats. This effect may be mainly related to the enhanced mitochondrial and peroxisomal ß-oxidation genes expression. On the other hand, saturated fatty acid-enriched diet induced an increase in liver triglyceride content and enhanced plasma cholesterol and triglyceride levels, both in control and immobilized rats. This detrimental effect may be ascribed to the induced HNF-4α binding activity on ApoCIII promoter and to the enhanced ApoCIII mRNA levels both in control and in sedentary rat livers. In conclusion, we can speculate that dietary saturated fats, acting at apolipoprotein transcriptional level, may impact on the close relationship existing among high ApoCIII plasma level, dyslipidemia, and atherosclerosis.


Assuntos
Apolipoproteína C-III/genética , DNA/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/farmacologia , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Descanso/fisiologia , Animais , Apolipoproteína C-III/metabolismo , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/enzimologia , Masculino , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Restrição Física , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo
15.
Micromachines (Basel) ; 12(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34442536

RESUMO

Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.

16.
J Cell Physiol ; 224(3): 590-600, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20578234

RESUMO

Stem cell-based regeneration of the heart has focused much scientific and public attention being cardiac diseases the major cause of disability and death in industrialized countries. Innumerable efforts have been taken to unveil the mechanisms undergoing stem cell proliferation and fate, but much remains to be endeavoured for their application in clinical practice. Nevertheless, the discovery of progenitor cells resident within the cardiac tissue has sparked off enthusiasm about the possibility of efficiently and safely engineering them to repair the injured myocardium. Indeed, the early applications of the cardiac progenitor cells, mostly based on simplistic concepts and techniques, have failed highlighting the prerequisite of expanding the knowledge about progenitor cell features and microenvironmental conditioning. In this review, recent information on resident cardiac progenitor cells has been systematically gathered in order to create a valuable instrument to support investigators in their efforts to establish an efficient cardiac cell therapy.


Assuntos
Coração , Miocárdio/citologia , Regeneração/fisiologia , Células-Tronco/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Coração/anatomia & histologia , Coração/embriologia , Cardiopatias/terapia , Humanos , Fenótipo , Transplante de Células-Tronco , Células-Tronco/citologia , Engenharia Tecidual/métodos
17.
Nanomaterials (Basel) ; 10(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023138

RESUMO

Modulation of macrophage plasticity is emerging as a successful strategy in tissue engineering (TE) to control the immune response elicited by the implanted material. Indeed, one major determinant of success in regenerating tissues and organs is to achieve the correct balance between immune pro-inflammatory and pro-resolution players. In recent years, nanoparticle-mediated macrophage polarization towards the pro- or anti-inflammatory subtypes is gaining increasing interest in the biomedical field. In TE, despite significant progress in the use of nanomaterials, the full potential of nanoparticles as effective immunomodulators has not yet been completely realized. This work discusses the contribution that nanotechnology gives to TE applications, helping native or synthetic scaffolds to direct macrophage polarization; here, three bioactive metallic and ceramic nanoparticles (gold, titanium oxide, and cerium oxide nanoparticles) are proposed as potential valuable tools to trigger skeletal muscle regeneration.

18.
Nanomaterials (Basel) ; 10(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049913

RESUMO

Severe muscle injuries are a real clinical issue that still needs to be successfully addressed. Tissue engineering can represent a potential approach for this aim, but effective healing solutions have not been developed yet. In this regard, novel experimental protocols tailored to a biomimetic approach can thus be defined by properly systematizing the findings acquired so far in the biomaterials and scaffold manufacturing fields. In order to plan a more comprehensive strategy, the extracellular matrix (ECM), with its properties stimulating neomyogenesis and vascularization, should be considered as a valuable biomaterial to be used to fabricate the tissue-specific three-dimensional structure of interest. The skeletal muscle decellularized ECM can be processed and printed, e.g., by means of stereolithography, to prepare bioactive and biomimetic 3D scaffolds, including both biochemical and topographical features specifically oriented to skeletal muscle regenerative applications. This paper aims to focus on the skeletal muscle tissue engineering sector, suggesting a possible approach to develop instructive scaffolds for a guided healing process.

19.
Biomed Res Int ; 2020: 2689701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282941

RESUMO

Functional engineered muscles are still a critical clinical issue to be addressed, although different strategies have been considered so far for the treatment of severe muscular injuries. Indeed, the regenerative capacity of skeletal muscle (SM) results inadequate for large-scale defects, and currently, SM reconstruction remains a complex and unsolved task. For this aim, tissue engineered muscles should provide a proper biomimetic extracellular matrix (ECM) alternative, characterized by an aligned/microtopographical structure and a myogenic microenvironment, in order to promote muscle regeneration. As a consequence, both materials and fabrication techniques play a key role to plan an effective therapeutic approach. Tissue-specific decellularized ECM (dECM) seems to be one of the most promising material to support muscle regeneration and repair. 3D printing technologies, on the other side, enable the fabrication of scaffolds with a fine and detailed microarchitecture and patient-specific implants with high structural complexity. To identify innovative biomimetic solutions to develop engineered muscular constructs for the treatment of SM loss, the more recent (last 5 years) reports focused on SM dECM-based scaffolds and 3D printing technologies for SM regeneration are herein reviewed. Possible design inputs for 3D printed SM dECM-based scaffolds for muscular regeneration are also suggested.


Assuntos
Materiais Biomiméticos/química , Matriz Extracelular/metabolismo , Músculo Esquelético/fisiologia , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Humanos
20.
Nanomaterials (Basel) ; 10(9)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916791

RESUMO

The development of smart and intelligent regenerative biomaterials for skeletal muscle tissue engineering is an ongoing challenge, owing to the requirement of achieving biomimetic systems able to communicate biological signals and thus promote optimal tissue regeneration. Electrospinning is a well-known technique to produce fibers that mimic the three dimensional microstructural arrangements, down to nanoscale and the properties of the extracellular matrix fibers. Natural and synthetic polymers are used in the electrospinning process; moreover, a blend of them provides composite materials that have demonstrated the potential advantage of supporting cell function and adhesion. Recently, the decellularized extracellular matrix (dECM), which is the noncellular component of tissue that retains relevant biological cues for cells, has been evaluated as a starting biomaterial to realize composite electrospun constructs. The properties of the electrospun systems can be further improved with innovative procedures of functionalization with biomolecules. Among the various approaches, great attention is devoted to the "click" concept in constructing a bioactive system, due to the modularity, orthogonality, and simplicity features of the "click" reactions. In this paper, we first provide an overview of current approaches that can be used to obtain biofunctional composite electrospun biomaterials. Finally, we propose a design of composite electrospun biomaterials suitable for skeletal muscle tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA