Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638725

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of the corticospinal motor neurons, which ultimately leads to death. The repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) represents the most common genetic cause of ALS and it is also involved in the pathogenesis of other neurodegenerative disorders. To offer insights into C9ORF72-mediated pathogenesis, we quantitatively analyzed the proteome of patient-derived primary skin fibroblasts from ALS patients carrying the C9ORF72 mutation compared with ALS patients who tested negative for it. Differentially expressed proteins were identified, used to generate a protein-protein interaction network and subjected to a functional enrichment analysis to unveil altered molecular pathways. ALS patients were also compared with patients affected by frontotemporal dementia carrying the C9ORF72 repeat expansion. As a result, we demonstrated that the molecular pathways mainly altered in fibroblasts (e.g., protein homeostasis) mirror the alterations observed in C9ORF72-mutated neurons. Moreover, we highlighted novel molecular pathways (nuclear and mitochondrial transports, vesicle trafficking, mitochondrial bioenergetics, glucose metabolism, ER-phagosome crosstalk and Slit/Robo signaling pathway) which might be further investigated as C9ORF72-specific pathogenetic mechanisms. Data are available via ProteomeXchange with the identifier PXD023866.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Expansão das Repetições de DNA , Fibroblastos , Proteoma , Transdução de Sinais/genética , Pele , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/genética , Proteoma/metabolismo , Pele/metabolismo , Pele/patologia
2.
Neurol Sci ; 40(12): 2537-2540, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31286297

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons. The hexanucleotide repeat expansion in C9orf72 gene (C9orf72-HRE) is the most frequent genetic cause of ALS. Since many ALS pedigrees showed incomplete penetrance, several genes have been analyzed as possible modifiers. Length of the GCG repeat tract in NIPA1 (non-imprinted in Prader-Willi/Angelman syndrome 1) gene has been recently investigated as a possible modifier factor for C9orf72-HRE patients with contrasting findings. To disclose the possible role of NIPA1 GCG repeat length as modifier of the disease risk in C9orf72-HRE carriers, we analyzed a large cohort of 532 Italian ALS cases enriched in C9orf72-HRE carriers (172 cases) and 483 Italian controls. This sample size is powered (92% power, p = 0.05) to replicate the modifier effect observed in literature. We did not observe higher frequency of NIPA1 long alleles (> 8 GCG) in C9orf72-HRE carriers (3.5%) compared with C9orf72-HRE negative patients (4.1%) and healthy controls (5%). For the latter comparison, we meta-analyzed our data with currently available literature data, and no statistically significant effect was observed (p = 0.118). In conclusion, we did not confirm a role of NIPA1 repeat length as a modifier of the C9orf72 ALS disease risk.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Genes Modificadores/genética , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Estudos de Coortes , Humanos , Itália , Expansão das Repetições de Trinucleotídeos
3.
Artigo em Inglês | MEDLINE | ID: mdl-31852254

RESUMO

Here, we described the first amyotrophic lateral sclerosis patient presenting the c.881 G > T p.G294V TARDBP mutation in homozygous status. The patient belongs to a large pedigree from Morocco. Except for one older affected brother his parents and remaining 8 sibs are referred to be healthy and do not show any neurological sign or symptom. The lack of evidence of TARDBP deletions of any sizes, together with the presence of several AOH segments, strongly suggests that the homozygosity status of p.G294V in the proband derived from parental consanguinity. A revision of the literature and our cohorts indicates that the p.G294V mutation has been detected in only 15 additional ALS patients in heterozygosity and, except for one additional Moroccan patient, all were of Italian origin. The analysis of microsatellite markers surrounding the TARDBP gene in 8 individuals carrying the p.G294V mutation showed that the haplotypic context of the Moroccan proband is shared with most patients of European origin indicating that they carry the p.G294V mutation inherited from a common ancestor. The analysis of the 15 ALS pedigrees (from literature data and present study), strongly suggests a reduced penetrance of the p.G294V mutation since for 13 of the 15 described p.G294V ALS cases the parents did not show any neurological symptoms. This result has potentially important implications in genetic counseling, since genetic testing of a reduced penetrance mutation on pre-symptomatic individuals proves very difficult to predict the outcome based on the genotype.


Assuntos
Alelos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Homozigoto , Mutação/genética , Adulto , Humanos , Masculino , Linhagem
4.
Stem Cell Res ; 47: 101924, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32739880

RESUMO

Among the known causative genes of familial ALS, SOD1mutation is one of the most common. It encodes for the ubiquitous detoxifying copper/zinc binding SOD1 enzyme, whose mutations selectively cause motor neuron death, although the mechanisms are not as yet clear. What is known is that mutant-mediated toxicity is not caused by loss of its detoxifying activity but by a gain-of-function. In order to better understand the pathogenic mechanisms of SOD1 mutation, a human induced pluripotent stem cell (hiPSC) line was generated from the somatic cells of a female patient carrying a missense variation in SOD1 (L145F).

5.
EuPA Open Proteom ; 11: 1-3, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900104

RESUMO

Mitochondria possess a proteolytic system that contributes to the regulation of mitochondrial dynamics, mitochondrial biogenesis and mitophagy. We aimed at the identification by bottom-up proteomics of altered protein processing due to the activation of mitochondrial proteases in a cellular model of impaired dopamine homeostasis. Moreover, we optimized the conditions for top-down proteomics to identify the cleavage site sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA