Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 32(9): 3245-52, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22378895

RESUMO

In mammals, increased Notch signaling is held partly responsible for a lack of neurogenesis after a spinal injury. However, this is difficult to test in an essentially nonregenerating system. We show that in adult zebrafish, which exhibit lesion-induced neurogenesis, e.g., of motor neurons, the Notch pathway is also reactivated. Although apparently compatible with neuronal regeneration in zebrafish, forced activity of the pathway significantly decreased progenitor proliferation and motor neuron generation. Conversely, pharmacological inhibition of the pathway increased proliferation and motor neuron numbers. This demonstrates that Notch is a negative signal for regenerative neurogenesis, and, importantly, that spinal motor neuron regeneration can be augmented in an adult vertebrate by inhibiting Notch signaling.


Assuntos
Proteínas de Homeodomínio/fisiologia , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptor Notch1/fisiologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Traumatismos da Medula Espinal/patologia , Peixe-Zebra
2.
Cell Rep ; 11(5): 689-96, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25921538

RESUMO

Accumulation of Aß peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aß peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by ß-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aß signaling to neurons.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Dosagem de Genes , Humanos , Fosforilação , Transdução de Sinais
3.
Dev Cell ; 25(5): 478-91, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23707737

RESUMO

Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Dopamina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/citologia , Regeneração , Animais , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Interneurônios/metabolismo , Microscopia de Fluorescência , Mutação , Transdução de Sinais , Medula Espinal/citologia , Células-Tronco/citologia , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
4.
J Comp Neurol ; 520(16): 3604-16, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22473852

RESUMO

In contrast to mammals, adult zebrafish regenerate neurons in the lesioned spinal cord. For example, motor neurons are generated from an olig2-expressing population of pMN-like ependymoradial glial cells in a ventrolateral position at the central canal. However, the extent of neuronal regeneration is unclear. Here we show, using a transgenic fish in which V2 interneurons are labeled by green fluorescent protein (GFP) under the control of the vsx1 promoter, that after a complete spinal cord transection, large numbers of V2 interneurons are generated in the vicinity of the lesion site. Tg(vsx1:GFP)⁺ cells are not present in the unlesioned spinal cord and label with the proliferation marker bromodeoxyuridine (BrdU) after a lesion. Some mediolaterally elongated Tg(vsx1:GFP)⁺ cells contact the central canal in a medial position. These cells likely arise from a p2-like domain of ependymoradial glial progenitor cells, indicated by coexpression of Pax6 and Nkx6.1, but not DsRed driven by the olig2 promoter in these cells. We also present evidence that Pax2⁺ interneurons are newly generated after a spinal lesion, whereas the generation rate for a dorsal population of parvalbuminergic interneurons is comparatively low. Our results identify the regenerative potential of different interneuron types for the first time and support a model in which different progenitor cell domains in distinct dorsoventral positions around the central canal are activated by a lesion to give rise to diverse neuronal cell types in the adult zebrafish spinal cord.


Assuntos
Interneurônios/citologia , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Traumatismos da Medula Espinal/patologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Axotomia , Imuno-Histoquímica , Hibridização In Situ , Interneurônios/metabolismo , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA