RESUMO
Optimal ex vivo expansion protocols for adoptive cell therapy (ACT) must yield T cells able to effectively home to tumors and survive the inhospitable conditions of the tumor microenvironment (TME), while simultaneously exerting persistent anti-tumor effector functions. Our previous work has shown that ex vivo activation in the presence of IL-12 can induce optimal expansion of murine CD8+ T cells, thus resulting in significant tumor regression after ACT mostly via sustained secretion of IFN-γ. In this report, we further elucidate the mechanism of this potency, showing that IL-12 additionally counteracts the negative regulatory effects of autocrine IFN-γ. IL-12 not only downregulates PD-1 expression by T cells, thus minimizing the effects of IFN-γ-induced PD-L1 upregulation by tumor stromal cells, but also inhibits IFNγR2 expression, thereby protecting T cells from IFN-γ-induced cell death. Thus, the enhanced anti-tumor activity of CD8+ T cells expanded ex vivo in the presence of IL-12 is due not only to the ability of IL-12-stimulated cells to secrete sustained levels of IFN-γ, but also to the additional capacity of IL-12 to counter the negative regulatory effects of autocrine IFN-γ.
Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Interferon gama/fisiologia , Interleucina-12/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interferon/análise , Receptores de Interferon/fisiologia , Receptor de Interferon gamaRESUMO
BACKGROUND: Renal cell carcinoma (RCC) patients treated with tyrosine kinase inhibitors (TKI) typically respond initially, but usually develop resistance to therapy. We utilised transcriptome analysis to identify gene expression changes during development of sunitinib resistance in a RCC patient-derived xenograft (PDX) model. METHODS: RCC tumours were harvested during pre-treatment, response and escape phases. Direct anti-proliferative effects of sunitinib plus MEK inhibitor were assessed. Activation status (phosphorylation) of MEK1/2 and ERK1/2 was determined, myeloid-derived suppressor cells (MDSC) sub-fractions were quantitated and G-CSF was measured by ELISA. RESULTS: During the response phase, tumours exhibited 91% reduction in volume, characterised by decreased expression of cell survival genes. After 4-week treatment, tumours developed resistance to sunitinib, associated with increased expression of pro-angiogenic and cell survival genes. During tumour escape, cellular movement, inflammatory response and immune cell trafficking genes were induced, along with intra-tumoural accumulation of MDSC. In this PDX model, either continuous treatment with sunitinib plus MEK inhibitor PD-0325901, or switching from sunitinib to PD-0325901 was effective. The combination of PD-0325901 with TKI suppressed intra-tumoural phospho-MEK1/2, phospho-ERK1/2 and MDSC. CONCLUSIONS: Continuous treatment with sunitinib alone did not maintain anti-tumour response; addition of MEK inhibitor abrogated resistance, leading to improved anti-tumour efficacy.
Assuntos
Benzamidas/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Difenilamina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Neoplasias Renais/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Adulto , Animais , Benzamidas/farmacologia , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Linhagem Celular Tumoral , Difenilamina/farmacologia , Difenilamina/uso terapêutico , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/uso terapêutico , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirróis/uso terapêutico , Receptores de Interleucina-2/deficiência , Sunitinibe , Carga Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Recent advancements in T cell immunotherapy suggest that T cells engineered with high-affinity TCR can offer better tumor regression. However, whether a high-affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope-reactive, CD8-independent, high-affinity TCR isolated from MHC class I-restricted CD4(+) T cells obtained from tumor-infiltrating lymphocytes (TIL) of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2-restricted TCR was positively selected on both CD4(+) and CD8(+) single-positive cells. However, when the TCR transgenic mouse was developed with a HLA-A2 background, the transgenic TCR was primarily expressed by CD3(+)CD4(-)CD8(-) double-negative T cells. TIL 1383I TCR transgenic CD4(+), CD8(+), and CD4(-)CD8(-) T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2(+)/human tyrosinase TCR double-transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high-affinity TIL 1383I TCR alone in CD3(+) T cells is sufficient to control the growth of murine and human melanoma, and the presence or absence of CD4 and CD8 coreceptors had little effect on its functional capacity.
Assuntos
Autoimunidade , Imunoterapia Adotiva/métodos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Complexo CD3/imunologia , Citometria de Fluxo , Antígeno HLA-A2/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
PURPOSE: Malignant melanoma represents the most lethal skin cancer with germline predispositions thought to comprise 10% to 15% of all melanoma cases. No studies to date examine the immunologic features that may differentiate survival differences between germline pathogenic variant (gPV)-positive patients with melanoma from gPV-negative patients with melanoma. EXPERIMENTAL DESIGN: Adult patients with melanoma and clinical characteristics suggesting hereditary predisposition to cancer were prospectively recruited to undergo germline testing and flow cytometric analysis of peripheral immune suppressor cells. RESULTS: In this cohort, gPV-positive patients (n = 72) had a significantly improved melanoma-specific survival (MSS) compared with gPV-negative patients (n = 411; HRadj, 0.32; 95% CI, 0.13-0.82; P = 0.01). These survival improvements among gPV-positive patients were most apparent among cutaneous melanoma subtypes (HRadj, 0.12; 95% CI, 0.016-0.86; P = 0.03) and numerically improved in later-stage (IIB-IV) patients (HRadj, 0.34; 95% CI, 0.10-1.11; P = 0.06). Further, gPV-positive patients had a significantly lower level of total circulating PMN-MDSC compared with gPV-negative patients (P = 0.01), which was most apparent in those diagnosed with later stages (IIB-IV) of melanoma (P = 0.009). Finally, a significant upregulation of inflammatory transcriptome signatures in later-stage gPV-positive patients (n = 21) was observed in comparison with gPV-negative patients (n = 173) in the cutaneous melanoma cohort (SKCM) of The Cancer Genome Atlas (TCGA). CONCLUSIONS: gPV-positive patients with melanoma exhibit improved MSS in addition to reduced peripheral PMN-MDSC and an enhanced inflammatory microenvironment.
Assuntos
Melanoma , Neoplasias Cutâneas , Adulto , Humanos , Melanoma/patologia , Neoplasias Cutâneas/genética , Mutação em Linhagem Germinativa , Predisposição Genética para Doença , Prognóstico , Microambiente TumoralRESUMO
INTRODUCTION: The combination of ipilimumab/nivolumab is approved for patients with treatment-naïve, intermediate-, and poor-risk metastatic renal cell carcinoma (mRCC), but duration of therapy and safety/efficacy of reinduction at progression is unknown. A phase II trial of intermittent ipilimumab/nivolumab with reinduction at progression was conducted (NCT03126331). PATIENTS AND METHODS: Patients with treatment-naïve mRCC were treated with induction ipilimumab/nivolumab followed by up to 24 weeks of maintenance nivolumab. Patients who achieved a complete response (CR) or partial response (PR) were eligible for inclusion and entered a treatment-free observation period. Patients were restaged every 12 weeks. Patients with no disease progression (PD) remained off therapy. Upon PD, patients were re-challenged with 2 doses of ipilimumab/nivolumab every 3 weeks. Study objectives were to estimate success rate of observation in patients who achieve a CR/PR, and to assess toxicity in patients undergoing reinduction. The study accrued slower than expected and was closed prior to the anticipated accrual goal of 20 patients. RESULTS: Nine patients were included; 89% male, median age 57, 67% clear-cell histology, and 78% intermediate-risk by IMDC criteria. Response to ipilimumab/nivolumab followed by nivolumab maintenance prior to enrollment was 33% CR and 67% PR. Most (78%) patients have remained off therapy, with a median treatment-free interval (TFI) of 34.3 months (range, 8.7-41.8). Two patients had PD off therapy and received 2 cycles of reinduction ipilimumab and nivolumab. No grade 3 or greater toxicities occurred with reinduction. Both patients developed PD at their first scans after reinduction. CONCLUSION: This prospective study demonstrates that patients with a radiographic response to ipilimumab/nivolumab can have prolonged treatment-free intervals. Further studies of de-escalation strategies are warranted. TRIAL REGISTRATION: NCT03126331 [Date of registration 4/27/2017; https://clinicaltrials.gov/ct2/show/NCT03126331].
RESUMO
PURPOSE: A single arm, phase II trial of carboplatin, nab-paclitaxel, and pembrolizumab (CNP) in metastatic triple-negative breast cancer (mTNBC) was designed to evaluate overall response rate (ORR), progression-free survival (PFS), duration of response (DOR), safety/tolerability, overall survival (OS), and identify pathologic and transcriptomic correlates of response to therapy. PATIENTS AND METHODS: Patients with ≤2 prior therapies for metastatic disease were treated with CNP regardless of tumor programmed cell death-ligand 1 status. Core tissue biopsies were obtained prior to treatment initiation. ORR was assessed using a binomial distribution. Survival was analyzed via the Kaplan-Meier method. Bulk RNA sequencing was employed for correlative studies. RESULTS: Thirty patients were enrolled. The ORR was 48.0%: 2 (7%) complete responses (CR), 11 (41%) partial responses (PR), and 8 (30%) stable disease (SD). The median DOR for patients with CR or PR was 6.4 months [95% confidence interval (CI), 4-8.5 months]. For patients with CR, DOR was >24 months. Overall median PFS and OS were 5.8 (95% CI, 4.7-8.5 months) and 13.4 months (8.9-17.3 months), respectively. We identified unique transcriptomic landscapes associated with each RECIST category of radiographic treatment response. In CR and durable PR, IGHG1 expression was enriched. IGHG1high tumors were associated with improved OS (P = 0.045) and were concurrently enriched with B cells and follicular helper T cells, indicating IGHG1 as a promising marker for lymphocytic infiltration and robust response to chemo-immunotherapy. CONCLUSIONS: Pretreatment tissue sampling in mTNBC treated with CNP reveals transcriptomic signatures that may predict radiographic responses to chemo-immunotherapy.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Perfilação da Expressão Gênica , Intervalo Livre de Progressão , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
The tumor microenvironment (TME) in ovarian cancer (OC) is characterized by immune suppression, due to an abundance of suppressive immune cells populations. To effectively enhance the activity of immune checkpoint inhibition (ICI), there is a need to identify agents that target these immunosuppressive networks while promoting the recruitment of effector T cells into the TME. To this end, we sought to investigate the effect of the immunomodulatory cytokine IL12 alone or in combination with dual-ICI (anti-PD1 + anti-CTLA4) on anti-tumor activity and survival, using the immunocompetent ID8-VEGF murine OC model. Detailed immunophenotyping of peripheral blood, ascites, and tumors revealed that durable treatment responses were associated with reversal of myeloid cell-induced immune suppression, which resulted in enhanced anti-tumor activity by T cells. Single cell transcriptomic analysis further demonstrated striking differences in the phenotype of myeloid cells from mice treated with IL12 in combination with dual-ICI. We also identified marked differences in treated mice that were in remission compared to those whose tumors progressed, further confirming a pivotal role for the modulation of myeloid cell function to allow for response to immunotherapy. These findings provide the scientific basis for the combination of IL12 and ICI to improve clinical response in OC.
Assuntos
Carcinoma Epitelial do Ovário , Imunoterapia , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Terapia de Imunossupressão , Imunoterapia/métodos , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Células Mieloides/patologia , Neoplasias Ovarianas/tratamento farmacológico , Microambiente TumoralRESUMO
Preconditioning a recipient host with lymphodepletion can markedly augment adoptive T cell therapy. However, the precise mechanisms involved are poorly understood. In a recent study, we observed a significant increase in the circulating levels of dendritic cells (DCs; CD11c(+)CD11b(+)) during the recovery from cyclophosphamide (CTX)-induced lymphodepletion. Herein, we demonstrate that the CTX-induced DC expansion was not altered by adjuvant chemotherapy or tumor burden but was augmented by coadministration of granulocyte-colony stimulating factor. Although the increase in the number of DCs was preceded by a systemic expansion of a population expressing the phenotype of myeloid-derived suppressor cells (Gr-1(+)CD11b(+)), depletion of these Gr-1(+) cells had no effect on the noted expansion. Moreover, when Gr-1(high)CD11b(high) cells were sorted from CTX-treated mice and adoptively transferred into control or CTX-treated recipients, they did not differentiate into DCs. Post-CTX expansion of DCs was associated with proliferation of DCs in bone marrow (BM) during the lymphopenic phase and in the blood and spleen during the recovery phase. Furthermore, adoptive transfer of BM cells from CTX-treated mice produced equal numbers of DCs in the blood of either CTX-treated or untreated recipients. CTX induced a dynamic surge in the expression of growth factors and chemokines in BM, where CCR2 and Flt3 signaling pathways were critical for DC expansion. In sum, our data suggest that CTX induces proliferation of DCs in BM prior to their expansion in the periphery. Targeting DCs at these phases would significantly improve their contribution to the clinical application of lymphodepletion to adoptive immunotherapy.
Assuntos
Proliferação de Células , Ciclofosfamida/farmacologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Proteínas de Membrana/fisiologia , Transferência Adotiva , Animais , Antígeno CD11b/biossíntese , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Leucopenia/imunologia , Leucopenia/patologia , Ligantes , Depleção Linfocítica , Melanoma Experimental , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Receptores de Quimiocinas/biossínteseRESUMO
Cancer immunotherapy has emerged as one of the most important new treatments for cancer in many years, moving rapidly to front-line therapy for several cancers. Cancer immunotherapy is based on treatment with immune checkpoint inhibitors (ICI), which are monoclonal antibodies directed toward immunoregulatory proteins including PD-1, PD-L1 and CTLA-4. ICI inhibit interactions between these proteins and their ligands, disabling physiologic immune regulatory networks and enhancing anti-tumor immunity. However, since the immune response cannot be directed specifically to the tumor, ICI are associated with immune-related adverse events (irAEs) resulting from immune-mediated attack of normal tissues. We and others have reported a high incidence of thrombosis in patients treated with ICI, which may approach 20%. Given the rapidly increasing use of ICIs, it is clear that ICI-Associated Thrombosis (IAT) is a major emerging clinical problem. However, there is a remarkable knowledge gap concerning mechanisms of IAT. IAT may be a composite irAE resulting from activation of blood and vascular cells, leading to thromboinflammation. Cancer itself is an inflammatory disorder, and inducing further inflammation through ICI administration may stimulate procoagulant activity by multiple cell types. Moreover, some blood and vascular cells express ICI target proteins. Here, we review the results of several studies describing the clinical manifestations of IAT, as well as our recent studies demonstrating that elevated levels of myeloid derived suppressor cells and inflammatory cytokines may serve as biomarkers of IAT. It is hoped that the concepts reviewed here may stimulate further research into this important clinical problem.
Assuntos
Antineoplásicos Imunológicos , Neoplasias , Trombose , Antineoplásicos Imunológicos/efeitos adversos , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/efeitos adversos , Inflamação/tratamento farmacológico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Trombose/tratamento farmacológicoRESUMO
Immune checkpoint inhibitor (ICI) therapy continues to revolutionize melanoma treatment, but only a subset of patients respond. Major efforts are underway to develop minimally invasive predictive assays of ICI response. Using single-cell transcriptomics, we discovered a unique CD8 T cell blood/tumor-shared subpopulation in melanoma patients with high levels of oxidative phosphorylation (OXPHOS), the ectonucleotidases CD38 and CD39, and both exhaustion and cytotoxicity markers. We called this population with high levels of OXPHOS "CD8+ TOXPHOS cells." We validated that higher levels of OXPHOS in tumor- and peripheral blood-derived CD8+ TOXPHOS cells correlated with ICI resistance in melanoma patients. We then developed an ICI therapy response predictive model using a transcriptomic profile of CD8+ TOXPHOS cells. This model is capable of discerning responders from nonresponders using either tumor or peripheral blood CD8 T cells with high accuracy in multiple validation cohorts. In sum, CD8+ TOXPHOS cells represent a critical immune population to assess ICI response with the potential to be a new target to improve outcomes in melanoma patients.
Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Melanoma/terapia , Fosforilação Oxidativa/efeitos dos fármacos , Subpopulações de Linfócitos T/efeitos dos fármacos , Adulto , Idoso , Algoritmos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Masculino , Melanoma/genética , Melanoma/imunologia , Pessoa de Meia-Idade , Modelos Genéticos , Avaliação de Resultados em Cuidados de Saúde/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Recent preclinical studies suggest that vaccination following adoptive transfer of CD8(+) T cells into a lymphopenic host can augment the therapeutic antitumor responses of the transferred cells. However, the mechanism by which the lymphopenic microenvironment benefits Ag-specific CD8(+) T cell responses remains elusive. We show herein that induction of lymphodepletion by a single 4 mg cyclophosphamide (CTX) treatment induces a marked expansion of immature dendritic cells (DCs) in the peripheral blood on days 8-16 post-CTX (termed restoration phase). In vitro, these DCs were functional, because they showed normal phagocytosis and effective Ag presentation capability upon activation. In vivo, administration of the TLR3 agonist poly(I:C) at the peak of DC expansion (day 12 postlymphopenia) induced inflammatory cytokine production and increases in the number of activated DCs in lymph nodes. Importantly, boosting with gp100(25-33) melanoma peptide combined with poly(I:C) 12 days after an initial priming with the same regimen significantly increased the expansion and the antitumor efficacy of adoptively transferred pmel-1 CD8(+) T cells. These responses were abrogated after depletion of activated DCs during Ag boosting. In conclusion, our data show that CTX treatment induces, during the restoration phase, expansion of immature DCs, which are functional and can be exploited in vivo to foster more effective antitumor adoptive immunotherapy strategies.
Assuntos
Vacinas Anticâncer/imunologia , Ciclofosfamida/toxicidade , Células Dendríticas/imunologia , Imunossupressores/toxicidade , Melanoma Experimental/terapia , Condicionamento Pré-Transplante/métodos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Células Dendríticas/efeitos dos fármacos , Citometria de Fluxo , Imunoterapia Adotiva/métodos , Indutores de Interferon/imunologia , Linfopenia/induzido quimicamente , Melanoma Experimental/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Poli I-C/imunologia , Receptor 3 Toll-Like/imunologia , Antígeno gp100 de MelanomaRESUMO
Despite the ability of immune-based interventions to dramatically increase the survival of patients with melanoma, a significant subset fail to benefit from this treatment, underscoring the need for accurate means to identify the patient population likely to respond to immunotherapy. Understanding how melanoma evades natural or manipulated immune responses could provide the information needed to identify such resistant individuals. Efforts to address this challenge are hampered by the vast immune diversity characterizing tumor microenvironments that remain largely understudied. It is thus important to more clearly elucidate the complex interactions that take place between the tumor microenvironment and host immune system.
Assuntos
Melanoma , Humanos , Imunoterapia , Melanoma/terapia , Microambiente TumoralRESUMO
BACKGROUND: Cancer immunotherapy is associated with several immune-related adverse events, but the relationship between immunotherapy and venous thromboembolism has not been thoroughly studied. METHODS: We conducted a retrospective cohort study of 1,686 patients who received immunotherapy for a variety of malignancies to determine the incidence of venous thromboembolism and the impact of venous thromboembolism on survival. To examine the potential role of inflammation in venous thromboembolism, we also profiled immune cells and plasma cytokines in blood samples obtained prior to initiation of immunotherapy in a sub-cohort of patients treated on clinical trials who subsequently did (N = 15), or did not (N = 10) develop venous thromboembolism. FINDINGS: Venous thromboembolism occurred while on immunotherapy in 404/1686 patients (24%) and was associated with decreased overall survival [HR=1.22 (95% CI 1.06-1.41), p<0.008]. Patients that developed venous thromboembolism had significantly higher pretreatment levels of myeloid-derived suppressor cells (5.382 ± 0.873 vs. 3.341 ± 0.3402, mean ± SEM; p=0.0045), interleukin 8 (221.2 ± 37.53 vs. 111.6 ± 25.36, mean ± SEM; p=0.016), and soluble vascular cell adhesion protein 1 (1210 ± 120.6 vs. 895.5 ± 53.34, mean ± SEM; p=0.0385). CONCLUSIONS: These findings demonstrate that venous thromboembolism is an underappreciated and important immune-related adverse event associated with cancer immunotherapy, and may implicate an interleukin 8 and myeloid-derived suppressor cell-driven pathway in pathogenesis.
Assuntos
Neoplasias , Tromboembolia Venosa , Humanos , Imunoterapia/efeitos adversos , Incidência , Interleucina-8/uso terapêutico , Neoplasias/complicações , Estudos Retrospectivos , Tromboembolia Venosa/epidemiologiaRESUMO
Renal cell carcinoma (RCC) is the most common type of kidney cancer and comprises several subtypes with unique characteristics. The most common subtype (~70% of cases) is clear-cell RCC. RCC is considered to be an immunogenic tumour but is known to mediate immune dysfunction in large part by eliciting the infiltration of immune-inhibitory cells, such as regulatory T cells and myeloid-derived suppressor cells, into the tumour microenvironment. Several possible mechanisms have been proposed to explain how these multiple tumour-infiltrating cell types block the development of an effective anti-tumour immune response, including inhibition of the activity of effector T cells and of antigen presenting cells via upregulation of suppressive factors such as checkpoint molecules. Targeting immune suppression using checkpoint inhibition has resulted in clinical responses in some patients with RCC and combinatorial approaches involving checkpoint blockade are now standard of care in patients with advanced RCC. However, a substantial proportion of patients do not benefit from checkpoint blockade. The identification of reliable biomarkers of response to checkpoint blockade is crucial to facilitate improvements in the clinical efficacy of these therapies. In addition, there is a need for the development of other immune-based strategies that address the shortcomings of checkpoint blockade, such as adoptive cell therapies.
Assuntos
Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Biomarcadores Tumorais , Carcinoma de Células Renais/terapia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Tolerância Imunológica , Imunoterapia Adotiva , Inflamação/complicações , Neoplasias Renais/terapia , Células Mieloides/imunologia , Linfócitos T/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
Abnormal accumulation of myeloid-derived suppressor cells (MDSC) is an important mechanism of tumor immune evasion. Cyclophosphamide (CTX) has also been shown in non-tumor bearing animals to cause transient surges in MDSC. Knowledge of MDSC is primarily based on preclinical work, and to date only few published studies have involved cancer patients. The goal of this study was to test the hypothesis that circulating MDSC levels correlate with clinical cancer stage, CTX-based chemotherapy, and metastatic tumor burden. Whole blood was collected from 106 newly diagnosed solid tumor patients (stages I-IV). Percentages of circulating MDSC (Lin(-/Lo), HLA DR-, CD33(+)CD11b(+)) were determined prior to initiation of systemic therapy. In 17 early stage breast cancer patients receiving doxorubicin-cyclophosphamide chemotherapy every 14 days (ddAC) blood was collected on day 1 of each cycle. Circulating MDSC were significantly increased in cancer patients of all stages relative to healthy volunteers. A significant correlation between circulating MDSC and clinical cancer stage was also observed. Moreover, among stage IV patients, those with extensive metastatic tumor burden had the highest percent and absolute number of MDSC. Significant increases in circulating MDSC were observed with ddAC when compared with pretreatment levels. Circulating MDSC levels correlate with clinical cancer stage, ddAC, and metastatic tumor burden. This information must be incorporated into the design of future trials exploring immune-based therapeutic strategies. Pharmacologic modulation of MDSC should also be tested in future clinical trials.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/imunologia , Neoplasias da Mama/imunologia , Ciclofosfamida/imunologia , Doxorrubicina/imunologia , Células Mieloides/citologia , Células Mieloides/imunologia , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Ciclofosfamida/uso terapêutico , Progressão da Doença , Doxorrubicina/uso terapêutico , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Padrões de Referência , Carga Tumoral/imunologiaRESUMO
Immune-checkpoint blockade enhances antitumor responses against cancers. One cancer type that is sensitive to checkpoint blockade is squamous cell carcinoma of the head and neck (SCCHN), which we use here to study limitations of this treatment modality. We observed that CD8+ tumor-infiltrating lymphocytes (TILs) in SCCHN and melanoma express excess immune checkpoints components PD-1 and Tim-3 and are also CD27-/CD28-, a phenotype we previously associated with immune dysfunction and suppression. In ex vivo experiments, patients' CD8+ TILs with this phenotype suppressed proliferation of autologous peripheral blood T cells. Similar phenotype and function of TILs was observed in the TC-1 mouse tumor model. Treatment of TC-1 tumors with anti-PD-1 or anti-Tim-3 slowed tumor growth in vivo and reversed the suppressive function of multi-checkpoint+ CD8+ TIL. Similarly, treatment of both human and mouse PD-1+ Tim-3+ CD8+ TILs with anticheckpoint antibodies ex vivo reversed their suppressive function. These suppressive CD8+ TILs from mice and humans expressed ligands for PD-1 and Tim-3 and exerted their suppressive function via IL10 and close contact. To model therapeutic strategies, we combined anti-PD-1 blockade with IL7 cytokine therapy or with transfer of antigen-specific T cells. Both strategies resulted in synergistic antitumor effects and reduced suppressor cell function. These findings enhance our understanding of checkpoint blockade in cancer treatment and identify strategies to promote synergistic activities in the context of other immunotherapies.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Anticorpos Bloqueadores/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Imunoterapia , Interleucina-10/imunologia , Interleucina-7/farmacologia , Interleucina-7/uso terapêutico , Ligantes , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Microambiente Tumoral/imunologiaRESUMO
Myeloid-derived suppressor cells (MDSC) are induced by and accumulate within many histologically distinct solid tumors, where they promote disease by secreting angiogenic and immunosuppressive molecules. Although IL1ß can drive the generation, accumulation, and functional capacity of MDSCs, the specific IL1ß-induced inflammatory mediators contributing to these activities remain incompletely defined. Here, we identified IL1ß-induced molecules that expand, mobilize, and modulate the accumulation and angiogenic and immunosuppressive potencies of polymorphonuclear (PMN)-MDSCs. Unlike parental CT26 tumors, which recruited primarily monocytic (M)-MDSCs by constitutively expressing GM-CSF- and CCR2-directed chemokines, IL1ß-transfected CT26 produced higher G-CSF, multiple CXC chemokines, and vascular adhesion molecules required for mediating infiltration of PMN-MDSCs with increased angiogenic and immunosuppressive properties. Conversely, CT26 tumors transfected with IL1ß-inducible molecules could mobilize PMN-MDSCs, but because they lacked the ability to upregulate IL1ß-inducible CXCR2-directed chemokines or vascular adhesion molecules, additional PMN-MDSCs could not infiltrate tumors. IL1ß-expressing CT26 increased angiogenic and immunosuppressive factors of tumor-infiltrating MDSCs, as did CT26 tumors individually transfected with G-CSF, Bv8, CXCL1, or CXCL5, demonstrating that mediators downstream of IL1ß could also modulate MDSC functional activity. Translational relevance was indicated by the finding that the same growth factors, cytokines, chemokines, and adhesion molecules responsible for the mobilization and recruitment of PMN-MDSCs into inflammatory CT26 murine tumors were also coordinately upregulated with increasing IL1ß expression in human renal cell carcinoma tumors. These studies demonstrated that IL1ß stimulated the components of a multifaceted inflammatory program that produces, mobilizes, chemoattracts, activates, and mediates the infiltration of PMN-MDSCs into inflammatory tumors to promote tumor progression.
Assuntos
Carcinoma de Células Renais/metabolismo , Quimiocina CXCL1/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Receptores Virais/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Quimiocinas/imunologia , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Taxa de SobrevidaRESUMO
BACKGROUND: Gene-mediated cytotoxic immunotherapy (GMCI) is a tumor-specific immune stimulatory strategy implemented through local delivery of aglatimagene besadenovec (AdV-tk) followed by anti-herpetic prodrug. GMCI induces T-cell dependent tumor immunity and synergizes with radiotherapy. Clinical trials in adult malignant gliomas demonstrated safety and potential efficacy. This is the first trial of GMCI in pediatric brain tumors. METHODS: This phase I dose escalation study was conducted to evaluate GMCI in patients 3 years of age or older with malignant glioma or recurrent ependymoma. AdV-tk at doses of 1 × 1011 and 3 × 1011 vector particles (vp) was injected into the tumor bed at the time of surgery followed by 14 days of valacyclovir. Radiation started within 8 days of surgery, and if indicated, chemotherapy began after completion of valacyclovir. RESULTS: Eight patients (6 glioblastoma, 1 anaplastic astrocytoma, 1 recurrent ependymoma) were enrolled and completed therapy: 3 on dose level 1 and 5 on dose level 2. Median age was 12.5 years (range 7-17) and Lansky/Karnofsky performance scores were 60-100. Five patients had multifocal/extensive tumors that could not be resected completely and 3 had gross total resection. There were no dose-limiting toxicities. The most common possibly GMCI-related adverse events included Common Terminology Criteria for Adverse Events grade 1-2 fever, fatigue, and nausea/vomiting. Three patients, in dose level 2, lived more than 24 months, with 2 alive without progression 37.3 and 47.7 months after AdV-tk injection. CONCLUSIONS: GMCI can be safely combined with radiation therapy with or without temozolomide in pediatric patients with brain tumors and the present results strongly support further investigation. CLINICAL TRIAL REGISTRY: ClinicalTrials.gov NCT00634231.
Assuntos
Neoplasias Encefálicas/terapia , Ependimoma/terapia , Terapia Genética/métodos , Glioma/terapia , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Adenoviridae/genética , Adolescente , Antivirais/uso terapêutico , Criança , Pré-Escolar , Ependimoma/secundário , Feminino , Vetores Genéticos , Humanos , Masculino , Pró-Fármacos/uso terapêutico , Timidina Quinase/administração & dosagem , Proteínas Virais/administração & dosagemRESUMO
BACKGROUND: The identification of prognostic and/or predictive biomarkers for response to immune checkpoint inhibitors (ICI) could help guide treatment decisions. OBJECTIVE: We assessed changes in programmed cell death-1 (PD1)/PD1 ligand (PDL1) expression in key immunomodulatory cell subsets (myeloid-derived suppressor cells [MDSC]; cytotoxic T lymphocytes [CTL]) following ICI therapy and investigated whether these changes correlated with outcomes in patients with metastatic urothelial carcinoma (mUC). PATIENTS AND METHODS: Serial peripheral blood samples were collected from ICI-treated mUC patients. Flow cytometry was used to quantify PD1/PDL1 expression on MDSC (CD33+HLADR-) and CTL (CD8+CD4-) from peripheral blood mononuclear cells. MDSC were grouped into monocytic (M)-MDSC (CD14+CD15-), polymorphonuclear (PMN)-MDSC (CD14-CD15+), and immature (I)-MDSC (CD14-CD15-). Mixed-model regression and Wilcoxon signed-rank or rank-sum tests were performed to assess post-ICI changes in immune biomarker expression and identify correlations between PD1/PDL1 expression and objective response to ICI. RESULTS: Of 41 ICI-treated patients, 26 received anti-PDL1 (23 atezolizumab/3 avelumab) and 15 received anti-PD1 (pembrolizumab) therapy. Based on available data, 27.5% had prior intravesical Bacillus Calmette-Guérin therapy, 42% had prior neoadjuvant chemotherapy, and 70% had prior cystectomy or nephroureterectomy. Successive doses of anti-PDL1 correlated with decreased percentage of PDL1+ (%PDL1+) M-MDSC, while doses of anti-PD1 correlated with decreased %PD1+ M- and I-MDSC. Although pre-treatment %PD1+ CTL did not predict response, a greater %PD1+ CTL within 9 weeks after ICI initiation correlated with objective response. CONCLUSIONS: Treatment with ICI correlated with distinct changes in PD1/PDL1-expressing peripheral immune cell subsets, which may predict objective response to ICI. Further studies are required to validate immune molecular expression as a prognostic and/or predictive biomarker for long-term outcomes in mUC.
Assuntos
Neoplasias Urológicas/tratamento farmacológico , Feminino , Humanos , Masculino , Metástase Neoplásica , Intervalo Livre de Progressão , Neoplasias Urológicas/patologiaRESUMO
Purpose: Little is known about the association between myeloid-derived suppressor cell (MDSC) subsets and various chemokines in patients with renal cell carcinoma (RCC) or the factors that draw MDSC into tumor parenchyma.Experimental Design: We analyzed polymorphonuclear MDSC (PMN-MDSC), monocytic MDSC (M-MDSC), and immature MDSC (I-MDSC) from the parenchyma and peripheral blood of 48 patients with RCC, isolated at nephrectomy. We analyzed levels of IL1ß, IL8, CXCL5, Mip-1α, MCP-1, and Rantes. Furthermore, we performed experiments in a Renca murine model to assess therapeutic synergy between CXCR2 and anti-PD1 and to elucidate the impact of IL1ß blockade on MDSC.Results: Parenchymal PMN-MDSC have a positive correlation with IL1ß, IL8, CXCL5, and Mip-1α, and I-MDSC correlate with IL8 and CXCL5. Furthermore, peripheral PMN-MDSC correlate with tumor grade. Given that PMN-MDSC express CXCR2 and parenchymal PMN-MDSC correlated with IL8 and CXCL5, we assessed the response of CXCR2 blockade with or without anti-PD1. Combination therapy reduced tumor weight and enhanced CD4+ and CD8+ T-cell infiltration. In addition, anti-IL1ß decreased PMN-MDSC and M-MDSC in the periphery, PMN-MDSC in the tumor, and peripheral CXCL5 and KC. Anti-IL1ß also delayed tumor growth.Conclusions: Parenchymal PMN-MDSC have a positive correlation with IL1ß, IL8, CXCL5, and Mip-1α, suggesting they may attract PMN-MDSC into the tumor. Peripheral PMN-MDSC correlate with tumor grade, suggesting prognostic significance. Anti-CXCR2 and anti-PD1 synergized to reduce tumor weight and enhanced CD4+ and CD8+ T-cell infiltration in a Renca murine model, suggesting that CXCR2+ PMN-MDSC are important in reducing activity of anti-PD1 antibody. Finally, anti-IL1ß decreases MDSC and delayed tumor growth, suggesting a potential target for MDSC inhibition. Clin Cancer Res; 23(9); 2346-55. ©2016 AACR.