Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(3): 608-22, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417111

RESUMO

The Ca(2+)-free form of calmodulin (apoCaM) often appears inert, modulating target molecules only upon conversion to its Ca(2+)-bound form. This schema has appeared to govern voltage-gated Ca(2+) channels, where apoCaM has been considered a dormant Ca(2+) sensor, associated with channels but awaiting the binding of Ca(2+) ions before inhibiting channel opening to provide vital feedback inhibition. Using single-molecule measurements of channels and chemical dimerization to elevate apoCaM, we find that apoCaM binding on its own markedly upregulates opening, rivaling the strongest forms of modulation. Upon Ca(2+) binding to this CaM, inhibition may simply reverse the initial upregulation. As RNA-edited and -spliced channel variants show different affinities for apoCaM, the apoCaM-dependent control mechanisms may underlie the functional diversity of these variants and explain an elongation of neuronal action potentials by apoCaM. More broadly, voltage-gated Na channels adopt this same modulatory principle. ApoCaM thus imparts potent and pervasive ion-channel regulation. PAPERCLIP:


Assuntos
Calmodulina/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Camundongos , Ratos , Canais de Sódio/química , Canais de Sódio/metabolismo
2.
Cell ; 133(7): 1228-40, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585356

RESUMO

Calmodulin (CaM) in complex with Ca(2+) channels constitutes a prototype for Ca(2+) sensors that are intimately colocalized with Ca(2+) sources. The C-lobe of CaM senses local, large Ca(2+) oscillations due to Ca(2+) influx from the host channel, and the N-lobe senses global, albeit diminutive Ca(2+) changes arising from distant sources. Though biologically essential, the mechanism underlying global Ca(2+) sensing has remained unknown. Here, we advance a theory of how global selectivity arises, and we experimentally validate this proposal with methodologies enabling millisecond control of Ca(2+) oscillations seen by the CaM/channel complex. We find that global selectivity arises from rapid Ca(2+) release from CaM combined with greater affinity of the channel for Ca(2+)-free versus Ca(2+)-bound CaM. The emergence of complex decoding properties from the juxtaposition of common elements, and the techniques developed herein, promise generalization to numerous molecules residing near Ca(2+) sources.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio , Calmodulina/genética , Linhagem Celular , Eletrofisiologia , Humanos , Mutagênese , Mutação Puntual , Estrutura Terciária de Proteína , Ratos
3.
Handb Exp Pharmacol ; 279: 159-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598608

RESUMO

The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.


Assuntos
Canalopatias , Síndrome do QT Longo , Humanos , Canalopatias/genética , Canais de Cálcio Tipo L/genética , Síndrome do QT Longo/genética , Mutação
4.
J Mol Cell Cardiol ; 173: 92-100, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272554

RESUMO

Mutations in the CaV1.2 L-type calcium channel can cause a profound form of long-QT syndrome known as long-QT type 8 (LQT8), which results in cardiac arrhythmias that are often fatal in early childhood. A growing number of such pathogenic mutations in CaV1.2 have been identified, increasing the need for targeted therapies. As many of these mutations reduce channel inactivation; resulting in excess Ca2+ entry during the action potential, calcium channel blockers (CCBs) would seem to represent a promising treatment option. Yet CCBs have been unsuccessful in the treatment of LQT8. Here, we demonstrate that this lack of efficacy likely stems from the impact of the mutations on CaV1.2 channel inactivation. As CCBs are known to preferentially bind to the inactivated state of the channel, mutation-dependent deficits in inactivation result in a decrease in use-dependent block of the mutant channel. Further, application of the CCB verapamil to induced pluripotent stem cell (iPSC) derived cardiomyocytes from an LQT8 patient demonstrates that this loss of use-dependent block translates to a lack of efficacy in correcting the LQT phenotype. As a growing number of channelopathic mutations demonstrate effects on channel inactivation, reliance on state-dependent blockers may leave a growing population of patients without a viable treatment option. This biophysical understanding of the interplay between inactivation deficits and state-dependent block may provide a new avenue to guide the development of improved therapies.


Assuntos
Bloqueadores dos Canais de Cálcio , Síndrome do QT Longo , Pré-Escolar , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Potenciais de Ação , Miócitos Cardíacos/metabolismo
5.
J Biol Chem ; 296: 100502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667546

RESUMO

Ca2+/calmodulin-dependent inactivation (CDI) of CaV channels is a critical regulatory process that tunes the kinetics of Ca2+ entry for different cell types and physiologic responses. CDI is mediated by calmodulin (CaM), which is bound to the IQ domain of the CaV carboxy tail. This modulatory process is tailored by alternative splicing such that select splice variants of CaV1.3 and CaV1.4 contain a long distal carboxy tail (DCT). The DCT harbors an inhibitor of CDI (ICDI) module that competitively displaces CaM from the IQ domain, thereby diminishing CDI. While this overall mechanism is now well described, the detailed interactions required for ICDI binding to the IQ domain are yet to be elucidated. Here, we perform alanine-scanning mutagenesis of the IQ and ICDI domains and evaluate the contribution of neighboring regions to CDI inhibition. Through FRET binding analysis, we identify functionally relevant residues within the CaV1.3 IQ domain and the CaV1.4 ICDI and nearby A region, which are required for high-affinity IQ/ICDI binding. Importantly, patch-clamp recordings demonstrate that disruption of this interaction commensurately diminishes ICDI function resulting in the re-emergence of CDI in mutant channels. Furthermore, CaV1.2 channels harbor a homologous DCT; however, the ICDI region of this channel does not appear to appreciably modulate CaV1.2 CDI. Yet coexpression of CaV1.2 ICDI with select CaV1.3 splice variants significantly disrupts CDI, implicating a cross-channel modulatory scheme in cells expressing both channel subtypes. In all, these findings provide new insights into a molecular rheostat that fine-tunes Ca2+-entry and supports normal neuronal and cardiac function.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Caveolina 1/metabolismo , Ativação do Canal Iônico , Mutação , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Células Cultivadas , Humanos , Cinética , Ligação Proteica , Relação Estrutura-Atividade
6.
Europace ; 23(3): 441-450, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33200177

RESUMO

AIMS: In 2003, an Australian woman was convicted by a jury of smothering and killing her four children over a 10-year period. Each child died suddenly and unexpectedly during a sleep period, at ages ranging from 19 days to 18 months. In 2019 we were asked to investigate if a genetic cause could explain the children's deaths as part of an inquiry into the mother's convictions. METHODS AND RESULTS: Whole genomes or exomes of the mother and her four children were sequenced. Functional analysis of a novel CALM2 variant was performed by measuring Ca2+-binding affinity, interaction with calcium channels and channel function. We found two children had a novel calmodulin variant (CALM2 G114R) that was inherited maternally. Three genes (CALM1-3) encode identical calmodulin proteins. A variant in the corresponding residue of CALM3 (G114W) was recently reported in a child who died suddenly at age 4 and a sibling who suffered a cardiac arrest at age 5. We show that CALM2 G114R impairs calmodulin's ability to bind calcium and regulate two pivotal calcium channels (CaV1.2 and RyR2) involved in cardiac excitation contraction coupling. The deleterious effects of G114R are similar to those produced by G114W and N98S, which are considered arrhythmogenic and cause sudden cardiac death in children. CONCLUSION: A novel functional calmodulin variant (G114R) predicted to cause idiopathic ventricular fibrillation, catecholaminergic polymorphic ventricular tachycardia, or mild long QT syndrome was present in two children. A fatal arrhythmic event may have been triggered by their intercurrent infections. Thus, calmodulinopathy emerges as a reasonable explanation for a natural cause of their deaths.


Assuntos
Infanticídio , Taquicardia Ventricular , Arritmias Cardíacas , Austrália , Criança , Pré-Escolar , Morte Súbita Cardíaca/etiologia , Feminino , Humanos , Lactente , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
7.
Circ Res ; 120(1): 39-48, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27765793

RESUMO

RATIONALE: Calmodulinopathies comprise a new category of potentially life-threatening genetic arrhythmia syndromes capable of producing severe long-QT syndrome (LQTS) with mutations involving CALM1, CALM2, or CALM3. The underlying basis of this form of LQTS is a disruption of Ca2+/calmodulin (CaM)-dependent inactivation of L-type Ca2+ channels. OBJECTIVE: To gain insight into the mechanistic underpinnings of calmodulinopathies and devise new therapeutic strategies for the treatment of this form of LQTS. METHODS AND RESULTS: We generated and characterized the functional properties of induced pluripotent stem cell-derived cardiomyocytes from a patient with D130G-CALM2-mediated LQTS, thus creating a platform with which to devise and test novel therapeutic strategies. The patient-derived induced pluripotent stem cell-derived cardiomyocytes display (1) significantly prolonged action potentials, (2) disrupted Ca2+ cycling properties, and (3) diminished Ca2+/CaM-dependent inactivation of L-type Ca2+ channels. Next, taking advantage of the fact that calmodulinopathy patients harbor a mutation in only 1 of 6 redundant CaM-encoding alleles, we devised a strategy using CRISPR interference to selectively suppress the mutant gene while sparing the wild-type counterparts. Indeed, suppression of CALM2 expression produced a functional rescue in induced pluripotent stem cell-derived cardiomyocytes with D130G-CALM2, as shown by the normalization of action potential duration and Ca2+/CaM-dependent inactivation after treatment. Moreover, CRISPR interference can be designed to achieve selective knockdown of any of the 3 CALM genes, making it a generalizable therapeutic strategy for any calmodulinopathy. CONCLUSIONS: Overall, this therapeutic strategy holds great promise for calmodulinopathy patients as it represents a generalizable intervention capable of specifically altering CaM expression and potentially attenuating LQTS-triggered cardiac events, thus initiating a path toward precision medicine.


Assuntos
Calmodulina/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Medicina de Precisão/métodos , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Síndrome do QT Longo/diagnóstico , Mutação de Sentido Incorreto/genética
8.
Biophys J ; 111(6): 1132-1140, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27542508

RESUMO

Optogenetics describes the use of genetically encoded photosensitive proteins to direct intended biological processes with light in recombinant and native systems. While most of these light-responsive proteins were originally discovered in photosynthetic organisms, the past few decades have been punctuated by experiments that not only commandeer but also engineer and enhance these natural tools to explore a wide variety of physiological questions. In addition, the ability to tune dynamic range and kinetic rates of optogenetic actuators is a challenging question that is heavily explored with computational methods devised to facilitate optimization of these systems. Here, we explain the basic mechanisms of a few popular photodimerizing optogenetic systems, discuss applications, compare optogenetic tools against more traditional chemical methods, and propose a simple quantitative understanding of how actuators exert their influence on targeted processes.


Assuntos
Optogenética , Animais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Optogenética/métodos , Plantas , Multimerização Proteica
9.
J Physiol ; 593(17): 3865-84, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26096996

RESUMO

Novel fluorescence resonance energy transfer-based genetically encoded reporters of calcineurin are constructed by fusing the two subunits of calcineurin with P2A-based linkers retaining the expected native conformation of calcineurin. Calcineurin reporters display robust responses to calcium transients in HEK293 cells. The sensor responses are correlated with NFATc1 translocation dynamics in HEK293 cells. The sensors are uniformly distributed in neonatal myocytes and respond efficiently to single electrically evoked calcium transients and show cumulative activation at frequencies of 0.5 and 1 Hz. In adult myocytes, the calcineurin sensors appear to be localized to the cardiac z-lines, and respond to cumulative calcium transients at frequencies of 0.5 and 1 Hz. The phosphatase calcineurin is a central component of many calcium signalling pathways, relaying calcium signals from the plasma membrane to the nucleus. It has critical functions in a multitude of systems, including immune, cardiac and neuronal. Given the widespread importance of calcineurin in both normal and pathological conditions, new tools that elucidate the spatiotemporal dynamics of calcineurin activity would be invaluable. Here we develop two separate genetically encoded fluorescence resonance energy transfer (FRET)-based sensors of calcineurin activation, DuoCaN and UniCaN. Both sensors showcase a large dynamic range and rapid response kinetics, differing primarily in the linker structure between the FRET pairs. Both sensors were calibrated in HEK293 cells and their responses correlated well with NFAT translocation to the nucleus, validating the biological relevance of the sensor readout. The sensors were subsequently expressed in neonatal rat ventricular myocytes and acutely isolated adult guinea pig ventricular myocytes. Both sensors demonstrated robust responses in myocytes and revealed kinetic differences in calcineurin activation during changes in pacing rate for neonatal versus adult myocytes. Finally, mathematical modelling combined with quantitative FRET measurements provided novel insights into the kinetics and integration of calcineurin activation in response to myocyte Ca transients. In all, DuoCaN and UniCaN stand as valuable new tools for understanding the role of calcineurin in normal and pathological signalling.


Assuntos
Calcineurina/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Transferência Ressonante de Energia de Fluorescência , Cobaias , Células HEK293 , Humanos , Fatores de Transcrição NFATC/fisiologia , Ratos
10.
J Mol Cell Cardiol ; 74: 115-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24816216

RESUMO

Recent work has identified missense mutations in calmodulin (CaM) that are associated with severe early-onset long-QT syndrome (LQTS), leading to the proposition that altered CaM function may contribute to the molecular etiology of this subset of LQTS. To date, however, no experimental evidence has established these mutations as directly causative of LQTS substrates, nor have the molecular targets of CaM mutants been identified. Here, therefore, we test whether expression of CaM mutants in adult guinea-pig ventricular myocytes (aGPVM) induces action-potential prolongation, and whether affiliated alterations in the Ca(2+) regulation of L-type Ca(2+) channels (LTCC) might contribute to such prolongation. In particular, we first overexpressed CaM mutants in aGPVMs, and observed both increased action potential duration (APD) and heightened Ca(2+) transients. Next, we demonstrated that all LQTS CaM mutants have the potential to strongly suppress Ca(2+)/CaM-dependent inactivation (CDI) of LTCCs, whether channels were heterologously expressed in HEK293 cells, or present in native form within myocytes. This attenuation of CDI is predicted to promote action-potential prolongation and boost Ca(2+) influx. Finally, we demonstrated how a small fraction of LQTS CaM mutants (as in heterozygous patients) would nonetheless suffice to substantially diminish CDI, and derange electrical and Ca(2+) profiles. In all, these results highlight LTCCs as a molecular locus for understanding and treating CaM-related LQTS in this group of patients.


Assuntos
Canais de Cálcio Tipo L/genética , Cálcio/metabolismo , Calmodulina/genética , Síndrome do QT Longo/genética , Mutação , Miócitos Cardíacos/metabolismo , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Regulação da Expressão Gênica , Cobaias , Células HEK293 , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Transdução de Sinais
11.
Nature ; 451(7180): 830-4, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18235447

RESUMO

Ca2+/calmodulin-dependent regulation of voltage-gated CaV1-2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel's carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-microM Ca2+ pulses driven by the associated channel, a behaviour defined as 'local Ca2+ selectivity'. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This 'global Ca2+ selectivity' satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel's amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Calmodulina/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Canais de Cálcio/genética , Linhagem Celular , Evolução Molecular , Humanos , Dados de Sequência Molecular , Especificidade por Substrato
12.
medRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826393

RESUMO

Timothy syndrome (OMIM #601005) is a rare disease caused by variants in the gene CACNA1C . Timothy syndrome patients were first identified as having a cardiac presentation of Long QT and syndactyly of the fingers and/or toes, and an identical variant in CACNA1C , Gly406Arg. However, since this original identification, more individuals harboring diverse variants in CACNA1C have been identified and have presented with various cardiac and extra-cardiac symptoms. Furthermore, it has remained underexplored whether individuals harboring canonical Gly406Arg variants in mutually exclusive exon 8A (Timothy syndrome 1) or exon 8 (Timothy syndrome 2) have additional symptoms. Here, we describe the first Natural History Study for Timothy syndrome, providing a thorough resource describing the current understanding of disease manifestation in Timothy syndrome patients. Parents of Timothy syndrome children were queried regarding a wide-ranging set of symptoms and features via a survey. Importantly, we find that in addition to cardiac concerns, Timothy syndrome patients commonly share extra-cardiac features including neurodevelopmental impairments, hypoglycemia, and respiratory problems. Our work expands the current understanding of the disorder to better inform the care of Timothy syndrome patients.

13.
J Mol Cell Cardiol ; 65: 76-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24076394

RESUMO

Cultured heart cells have long been valuable for characterizing biological mechanism and disease pathogenesis. However, these preparations have limitations, relating to immaturity in key properties like excitation-contraction coupling and ß-adrenergic stimulation. Progressive attenuation of the latter is intimately related to pathogenesis and therapy in heart failure. Highly valuable would be a long-term culture system that emulates the structural and functional changes that accompany disease and development, while concurrently permitting ready access to underlying molecular events. Accordingly, we here produce functional monolayers of adult guinea-pig ventricular myocytes (aGPVMs) that can be maintained in long-term culture for several weeks. At baseline, these monolayers exhibit considerable myofibrillar organization and a significant contribution of sarcoplasmic reticular (SR) Ca(2+) release to global Ca(2+) transients. In terms of electrical signaling, these monolayers support propagated electrical activity and manifest monophasic restitution of action-potential duration and conduction velocity. Intriguingly, ß-adrenergic stimulation increases chronotropy but not inotropy, indicating selective maintenance of ß-adrenergic signaling. It is interesting that this overall phenotypic profile is not fixed, but can be readily enhanced by chronic electrical stimulation of cultures. This simple environmental cue significantly enhances myofibrillar organization as well as ß-adrenergic sensitivity. In particular, the chronotropic response increases, and an inotropic effect now emerges, mimicking a reversal of the progression seen in heart failure. Thus, these aGPVM monolayer cultures offer a valuable platform for clarifying long elusive features of ß-adrenergic signaling and its plasticity.


Assuntos
Técnicas de Cultura de Células/métodos , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Envelhecimento , Animais , Cálcio , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Citosol/metabolismo , Estimulação Elétrica , Acoplamento Excitação-Contração , Células Gigantes/metabolismo , Cobaias , Sistema de Condução Cardíaco/fisiologia , Masculino , Modelos Biológicos , Miofibrilas/metabolismo , Subunidades Proteicas/metabolismo , Receptores Adrenérgicos beta/metabolismo , Fatores de Tempo
14.
Channels (Austin) ; 17(1): 2165278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36629534

RESUMO

Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.


Assuntos
Síndrome do QT Longo , Taquicardia Ventricular , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Mutação , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo
15.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38106154

RESUMO

Generating animal models for individual patients within clinically-useful timeframes holds great potential toward enabling personalized medicine approaches for genetic epilepsies. The ability to rapidly incorporate patient-specific genomic variants into model animals recapitulating elements of the patient's clinical manifestations would enable applications ranging from validation and characterization of pathogenic variants to personalized models for tailoring pharmacotherapy to individual patients. Here, we demonstrate generation of an animal model of an individual epilepsy patient with an ultra-rare variant of the NMDA receptor subunit GRIN2A, without the need for germline transmission and breeding. Using in utero prime editing in the brain of wild-type mice, our approach yielded high in vivo editing precision and induced frequent, spontaneous seizures which mirrored specific elements of the patient's clinical presentation. Leveraging the speed and versatility of this approach, we introduce PegAssist, a generalizable workflow to generate bedside-to-bench animal models of individual patients within weeks. The capability to produce individualized animal models rapidly and cost-effectively will reduce barriers to access for precision medicine, and will accelerate drug development by offering versatile in vivo platforms to identify compounds with efficacy against rare neurological conditions.

16.
J Gen Physiol ; 154(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36167061

RESUMO

The first pathogenic mutation in CaV1.2 was identified in 2004 and was shown to cause a severe multisystem disorder known as Timothy syndrome (TS). The mutation was localized to the distal S6 region of the channel, a region known to play a major role in channel activation. TS patients suffer from life-threatening cardiac symptoms as well as significant neurodevelopmental deficits, including autism spectrum disorder (ASD). Since this discovery, the number and variety of mutations identified in CaV1.2 have grown tremendously, and the distal S6 regions remain a frequent locus for many of these mutations. While the majority of patients harboring these mutations exhibit cardiac symptoms that can be well explained by known pathogenic mechanisms, the same cannot be said for the ASD or neurodevelopmental phenotypes seen in some patients, indicating a gap in our understanding of the pathogenesis of CaV1.2 channelopathies. Here, we use whole-cell patch clamp, quantitative Ca2+ imaging, and single channel recordings to expand the known mechanisms underlying the pathogenesis of CaV1.2 channelopathies. Specifically, we find that mutations within the S6 region can exert independent and separable effects on activation, voltage-dependent inactivation (VDI), and Ca2+-dependent inactivation (CDI). Moreover, the mechanisms underlying the CDI effects of these mutations are varied and include altered channel opening and possible disruption of CDI transduction. Overall, these results provide a structure-function framework to conceptualize the role of S6 mutations in pathophysiology and offer insight into the biophysical defects associated with distinct clinical manifestations.


Assuntos
Transtorno do Espectro Autista , Canalopatias , Transtorno do Espectro Autista/genética , Transtorno Autístico , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canalopatias/genética , Humanos , Síndrome do QT Longo , Mutação , Sindactilia
17.
Nat Cardiovasc Res ; 1(5): 1-13, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35662881

RESUMO

Voltage-gated sodium (Nav1.5) channels support the genesis and brisk spatial propagation of action potentials in the heart. Disruption of NaV1.5 inactivation results in a small persistent Na influx known as late Na current (I Na,L), which has emerged as a common pathogenic mechanism in both congenital and acquired cardiac arrhythmogenic syndromes. Here, using low-noise multi-channel recordings in heterologous systems, LQTS3 patient-derived iPSCs cardiomyocytes, and mouse ventricular myocytes, we demonstrate that the intracellular fibroblast growth factor homologous factors (FHF1-4) tune pathogenic I Na,L in an isoform-specific manner. This scheme suggests a complex orchestration of I Na,L in cardiomyocytes that may contribute to variable disease expressivity of NaV1.5 channelopathies. We further leverage these observations to engineer a peptide-inhibitor of I Na,L with a higher efficacy as compared to a well-established small-molecule inhibitor. Overall, these findings lend insights into molecular mechanisms underlying FHF regulation of I Na,L in pathophysiology and outline potential therapeutic avenues.

18.
J Gen Physiol ; 150(12): 1688-1701, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30470716

RESUMO

L-type calcium channels (LTCCs) are critical elements of normal cardiac function, playing a major role in orchestrating cardiac electrical activity and initiating downstream signaling processes. LTCCs thus use feedback mechanisms to precisely control calcium (Ca2+) entry into cells. Of these, Ca2+-dependent inactivation (CDI) is significant because it shapes cardiac action potential duration and is essential for normal cardiac rhythm. This important form of regulation is mediated by a resident Ca2+ sensor, calmodulin (CaM), which is comprised of two lobes that are each capable of responding to spatially distinct Ca2+ sources. Disruption of CaM-mediated CDI leads to severe forms of long-QT syndrome (LQTS) and life-threatening arrhythmias. Thus, a model capable of capturing the nuances of CaM-mediated CDI would facilitate increased understanding of cardiac (patho)physiology. However, one critical barrier to achieving a detailed kinetic model of CDI has been the lack of quantitative data characterizing CDI as a function of Ca2+ This data deficit stems from the experimental challenge of uncoupling the effect of channel gating on Ca2+ entry. To overcome this obstacle, we use photo-uncaging of Ca2+ to deliver a measurable Ca2+ input to CaM/LTCCs, while simultaneously recording CDI. Moreover, we use engineered CaMs with Ca2+ binding restricted to a single lobe, to isolate the kinetic response of each lobe. These high-resolution measurements enable us to build mathematical models for each lobe of CaM, which we use as building blocks for a full-scale bilobal model of CDI. Finally, we use this model to probe the pathogenesis of LQTS associated with mutations in CaM (calmodulinopathies). Each of these models accurately recapitulates the kinetics and steady-state properties of CDI in both physiological and pathological states, thus offering powerful new insights into the mechanistic alterations underlying cardiac arrhythmias.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Cálcio/metabolismo , Calmodulina/metabolismo , Modelos Químicos , Calmodulina/genética , Humanos , Síndrome do QT Longo/genética
19.
Elife ; 72018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198845

RESUMO

Calmodulin (CaM) serves as a pervasive regulatory subunit of CaV1, CaV2, and NaV1 channels, exploiting a functionally conserved carboxy-tail element to afford dynamic Ca2+-feedback of cellular excitability in neurons and cardiomyocytes. Yet this modularity counters functional adaptability, as global changes in ambient CaM indiscriminately alter its targets. Here, we demonstrate that two structurally unrelated proteins, SH3 and cysteine-rich domain (stac) and fibroblast growth factor homologous factors (fhf) selectively diminish Ca2+/CaM-regulation of CaV1 and NaV1 families, respectively. The two proteins operate on allosteric sites within upstream portions of respective channel carboxy-tails, distinct from the CaM-binding interface. Generalizing this mechanism, insertion of a short RxxK binding motif into CaV1.3 carboxy-tail confers synthetic switching of CaM regulation by Mona SH3 domain. Overall, our findings identify a general class of auxiliary proteins that modify Ca2+/CaM signaling to individual targets allowing spatial and temporal orchestration of feedback, and outline strategies for engineering Ca2+/CaM signaling to individual targets.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Retroalimentação Fisiológica , Canais de Sódio/metabolismo , Potenciais de Ação , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Calmodulina/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Mutagênese , Proteínas do Tecido Nervoso , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas , Ratos , Transdução de Sinais
20.
J Pain ; 8(4): 315-24, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17175203

RESUMO

UNLABELLED: Sodium channel blockers such as lidocaine, lamotrigine, and carbamazepine can be effective in the treatment of neuropathic pain. Though not approved for neuropathic pain indications, tricyclic antidepressants are often considered first-line treatment for conditions such as post-herpetic neuralgia and diabetic neuropathy. Several tricyclic antidepressants have been shown to block peripheral nerve sodium channels, which may contribute to their antihyperalgesic efficacy. In this study, we compared the sodium channel-blocking potency of a number of antidepressants, including tricyclic antidepressants and selective serotonin reuptake inhibitors. All compounds tested inhibited Na(V)1.7 in a state- and use-dependent manner, with affinities for the inactivated state ranging from 0.24 micromol/L for amitriptyline to 11.6 micromol/L for zimelidine. The tricyclic antidepressants were more potent blockers of Na(V)1.7. Moreover, IC(50)s for block of the inactivated state for amitriptyline, nortriptyline, imipramine, desipramine, and maprotiline were in the range of therapeutic plasma concentrations for both the treatment of depression as well as neuropathic pain. By contrast, fluoxetine, paroxetine, mianserine, and zimelidine had IC(50)s for Na(V)1.7 outside their therapeutic concentration ranges and generally were not efficacious against post-herpetic neuralgia or diabetic neuropathy. These results suggest that block of peripheral nerve sodium channels may contribute to the antihyperalgesic efficacy of certain antidepressants. PERSPECTIVE: Tricyclic antidepressants are often considered first-line treatment for neuropathic pain. Some tricyclic antidepressants block sodium channels, which may contribute to their antihyperalgesic efficacy. In the current study, we compared the potency of peripheral sodium channel blockade for several tricyclic antidepressants and selective serotonin reuptake inhibitors with their therapeutic efficacy.


Assuntos
Analgésicos , Antidepressivos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Anestésicos Locais/farmacologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Antidepressivos Tricíclicos/farmacologia , Linhagem Celular , Eletrofisiologia , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.7 , Neurônios Aferentes/efeitos dos fármacos , Paroxetina/farmacologia , Técnicas de Patch-Clamp , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA