Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2217973120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639613

RESUMO

In social animals, success can depend on the outcome of group battles. Theoretical models of warfare predict that group fighting ability is proportional to two key factors: the strength of each soldier in the group and group size. The relative importance of these factors is predicted to vary across environments [F. W. Lanchester, Aircraft in Warfare, the Dawn of the Fourth Arm (1916)]. Here, we provide an empirical validation of the theoretical prediction that open environments should favor superior numbers, whereas complex environments should favor stronger soldiers [R. N. Franks, L. W. Partridge, Anim. Behav. 45, 197-199 (1993)]. We first demonstrate this pattern using simulated battles between relatively strong and weak soldiers in a computer-driven algorithm. We then validate this result in real animals using an ant model system: In battles in which the number of strong native meat ant Iridomyrmex purpureus workers is constant while the number of weak non-native invasive Argentine ant Linepithema humile workers increases across treatments, fatalities of I. purpureus are lower in complex than in simple arenas. Our results provide controlled experimental evidence that investing in stronger soldiers is more effective in complex environments. This is a significant advance in the empirical study of nonhuman warfare and is important for understanding the competitive balance among native and non-native invasive ant species.


Assuntos
Aeronaves , Formigas , Animais , Algoritmos , Pesquisa Empírica , Espécies Introduzidas
2.
Proc Biol Sci ; 291(2024): 20232771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864334

RESUMO

Land use change alters floral resource availability, thereby contributing to declines in important pollinators. However, the severity of land use impact varies by species, influenced by factors such as dispersal ability and resource specialization, both of which can correlate with body size. Here. we test whether floral resource availability in the surrounding landscape (the 'matrix') influences bee species' abundance in isolated remnant woodlands, and whether this effect varies with body size. We sampled quantitative flower-visitation networks within woodland remnants and quantified floral energy resources (nectar and pollen calories) available to each bee species both within the woodland and the matrix. Bee abundance in woodland increased with floral energy resources in the surrounding matrix, with strongest effects on larger-bodied species. Our findings suggest important but size-dependent effects of declining matrix floral resources on the persistence of bees in remnant woodlands, highlighting the need to incorporate landscape-level floral resources in conservation planning for pollinators in threatened natural habitats.


Assuntos
Abelhas , Tamanho Corporal , Metabolismo Energético , Florestas , Polinização , Densidade Demográfica , Abelhas/anatomia & histologia , Abelhas/metabolismo , Néctar de Plantas/metabolismo , Biodiversidade , Animais
3.
Proc Biol Sci ; 291(2019): 20232885, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503337

RESUMO

The ecosystem services provided by dung beetles are well known and valued. Dung beetles bury dung for feeding and breeding, and it is generally thought that the process of burying dung increases nutrient uptake by plant roots, which promotes plant growth. Many studies have tested the effects of dung beetles on plant growth, but there has been no quantitative synthesis of these studies. Here we use a multi-level meta-analysis to estimate the average effect of dung beetles on plant growth and investigate factors that moderate this effect. We identified 28 publications that investigated dung beetle effects on plant growth. Of these, 24 contained the minimum quantitative data necessary to include in a meta-analysis. Overall, we found that dung beetles increased plant growth by 17%; the 95% CI for possible values for the true increase in plant growth that were most compatible with our data, given our statistical model, ranged from 1% to 35%. We found evidence that the dung beetle-plant growth relationship is influenced by the plant measurement type and the number of beetles accessing the dung. However, beetles did not increase plant growth in all quantitative trials, as individual effect sizes ranged from -72% to 806%, suggesting important context-dependence in the provision of ecosystem services.


Assuntos
Besouros , Ecossistema , Animais , Melhoramento Vegetal , Plantas , Fezes
4.
Oecologia ; 196(1): 275-288, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33871689

RESUMO

Global initiatives to reforest degraded areas have intensified in recent years, in an attempt to reverse the environmental impacts of habitat loss on species and ecosystem provided by them. However, the effectiveness of such reforestation initiatives in re-establishing biodiversity is still poorly understood. Here, we test how reforestation type and intensity applied to deforested areas affect the reestablishment of communities of cavity-nesting bees and wasps. We deployed experimental trap-nests along a reforestation gradient of increasing structural similarity to primary forest, after 18 years of reforestation. We found that reestablishment, in terms of abundance and richness of both bees and wasps, was greatest at an intermediate point along the reforestation gradient. However, these communities were highly dissimilar to primary forest, and recovery of intact insect community composition was only achieved when reforestation was more similar in structure to natural forests. This effect was more pronounced for bees than for wasps. Our findings suggest that along the reforestation gradient, services provided by wasps will be more easily recovered than those provided by bees. Our results have important implications for the challenges of restoring and maintaining species biodiversity as well as their associated ecosystem services.


Assuntos
Vespas , Animais , Abelhas , Biodiversidade , Brasil , Ecossistema , Florestas
5.
Mol Phylogenet Evol ; 139: 106532, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185297

RESUMO

The formation of the Australian arid zone, Australia's largest and youngest major biome, has been recognized as a major driver of rapid evolutionary radiations in terrestrial plants and animals. Here, we investigate the phylogenetic diversity and evolutionary history of subterranean short-tailed whip scorpions (Schizomida: Hubbardiidae), which are a significant faunal component of Western Australian hypogean ecosystems. We sequenced two mitochondrial (12S, COI) and three nuclear DNA markers (18S, 28S, ITS2) from ∼600 specimens, largely from the genera Draculoides and Paradraculoides, including 20 previously named species and an additional 56 newly identified operational taxonomic units (OTUs). Phylogenetic analyses revealed a large and rapid species radiation congruent with Cenozoic aridification of the continent, in addition to the identification of a new genus in Western Australia and the first epigean schizomid from the Pilbara. Here, we also synonymise Paradraculoides with Draculoides (new synonymy), due to paraphyly and a lack of reliable characters to define the two genera. Our results are consistent with multiple colonisations of the subterranean realm from epigean ancestors as their forest habitat fragmented and retracted, with ongoing fragmentation and diversification of lineages underground. These findings illustrate the remarkable diversity and high incidence of short-range endemism of Western Australia's subterranean fauna, which has important implications for identifying and managing short-range endemic subterranean fauna. They also highlight the advantages of including molecular data in subterranean fauna surveys as all specimens can be utilized, regardless of sex and life stage. Additionally, we have provided the first multi-gene phylogenetic framework for Australian schizomids, which will enable researchers and environmental consultants to identify new taxa or align them to existing lineages.


Assuntos
Aracnídeos/classificação , Clima Desértico , Animais , Aracnídeos/genética , Austrália , Sequência de Bases , Geografia , Funções Verossimilhança , Filogenia , Fatores de Tempo
6.
Ecol Lett ; 20(10): 1273-1284, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28853198

RESUMO

Changes in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump-shaped responses to soil ageing, which were propagated to higher-order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate-aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change.


Assuntos
Mudança Climática , Cadeia Alimentar , Clima , Solo
7.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179522

RESUMO

Field metabolic rate (FMR) links the energy budget of an animal with the constraints of its ecosystem, but is particularly difficult to measure for small organisms. Landscape degradation exacerbates environmental adversity and reduces resource availability, imposing higher costs of living for many organisms. Here, we report a significant effect of landscape degradation on the FMR of free-flying Apis mellifera, estimated using 86Rb radio-isotopic turnover. We validated the relationship between 86Rb kb and metabolic rate for worker bees in the laboratory using flow-through respirometry. We then released radioisotopically enriched individuals into a natural woodland and a heavily degraded and deforested plantation. FMRs of worker bees in natural woodland vegetation were significantly higher than in a deforested landscape. Nectar consumption, estimated using 22Na radio-isotopic turnover, also differed significantly between natural and degraded landscapes. In the deforested landscape, we infer that the costs of foraging exceeded energetic availability, and honeybees instead foraged less and depended more on stored resources in the hive. If this is generally the case with increasing landscape degradation, this will have important implications for the provision of pollination services and the effectiveness and resilience of ecological restoration practice.


Assuntos
Abelhas/metabolismo , Ecossistema , Néctar de Plantas , Animais
8.
Ecology ; 98(2): 500-511, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864933

RESUMO

Understanding the relationship between plant diversity and diversity at higher trophic levels is important from both conservation and restoration perspectives. Although there is strong evidence for bottom-up maintenance of biodiversity, this is based largely on studies of simplified grassland systems. Recently, studies in the TreeDivNet global network of tree diversity experiments have begun to test whether these findings are generalizable to more complex ecosystems, such as woodlands. We monitored invertebrate community reassembly over 5 yr of experimental woodland restoration at the TreeDivNet Ridgefield site in southwest Australia, testing the effects of woody plant species richness and herb-layer manipulation on invertebrate community structure and ant species composition. From 2010 to 2014, we sampled ground-dwelling invertebrates using pitfall traps in herbicide vs. no-herbicide subplots nested within each of 10 woody plant treatments varying in richness from zero (bare controls) to eight species, which produced a total of 211, 235 invertebrates, including 98, 979 ants belonging to 74 species. In mixed model analyses, the presence of woody plants was an important driver of faunal community reassembly (relative to bare control plots), but faunal responses to woody plant treatment combinations were idiosyncratic and unrelated to woody plant richness across treatments. We also found that a herbicide-induced reduction in herbaceous plant cover and richness had a positive effect on ant richness and caused more rapid convergence of invertebrate community composition toward the composition of a woodland reference site. These findings show that woody plant richness did not have direct positive effects on the diversity and community reassembly trajectories of higher trophic levels in our woodland system. From a management perspective, this suggests that even low-diversity restoration or carbon sequestration plantings can potentially lead to faunal reassembly outcomes that are comparable to more complex re-planting designs.


Assuntos
Biodiversidade , Ecossistema , Invertebrados/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Animais , Austrália , Invertebrados/classificação , Árvores/classificação
9.
Ecology ; 98(4): 995-1005, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27859031

RESUMO

Habitat fragmentation dramatically alters the spatial configuration of landscapes, with the creation of artificial edges affecting community structure and dynamics. Despite this, it is not known how the different food webs in adjacent habitats assemble at their boundaries. Here we demonstrate that the composition and structure of herbivore-parasitoid food webs across edges between native and plantation forests are not randomly assembled from those of the adjacent communities. Rather, elevated proportions of abundant, interaction-generalist parasitoid species at habitat edges allowed considerable interaction rewiring, which led to higher linkage density and less modular networks, with higher parasitoid functional redundancy. This was despite high overlap in host composition between edges and interiors. We also provide testable hypotheses for how food webs may assemble between habitats with lower species overlap. In an increasingly fragmented world, non-random assembly of food webs at edges may increasingly affect community dynamics at the landscape level.


Assuntos
Ecossistema , Cadeia Alimentar , Ecologia , Florestas , Herbivoria
11.
Ecology ; 96(1): 193-202, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236904

RESUMO

Edge effects in fragmented natural habitats may De exaceroateci by intensive land use in the surrounding landscape. Given that most managed systems have higher primary productivity than adjacent natural systems, theory suggests that bottom-up subsidized consumers are likely to spill over from managed to natural habitats. Furthermore, the magnitude of spillover is likely to differ between generalist and specialist consumers, because of differences in their ability to use the full spectrum of resources. However, it is unknown whether there is indeed asymmetrical spillover of consumers between managed and natural habitats, and whether this is related to resource abundance or the trophic specialization of the consumer. We used flight intercept traps to measure spillover of generalist predators (Vespula wasps, Vespidae) and more specialist predators (106 species of parasitoids, Ichneumonidae and Braconidae) across habitat edges between native New Zealand forest and exotic plantation forest over a summer season. We found net spillover of both generalist and specialist predators from plantation to native forest, and that this was greater for generalists. To test whether natural enemy spillover from managed habitats was related to prey (caterpillar) abundance (i.e., whether it was bottom-up productivity driven, due to increased primary productivity), we conducted a large-scale herbivore reduction experiment at half of our plantation sites, by helicopter spraying caterpillar-specific insecticide over 2.5 ha per site. We monitored bidirectional natural enemy spillover and found that herbivore reduction reduced generalist but not specialist predator spillover. Trophic generalists may benefit disproportionately from high resource productivity in a habitat, and their cross-habitat spillover effects on natural food webs may be an important source of consumer pressure in mosaic landscapes.


Assuntos
Cadeia Alimentar , Agricultura Florestal , Florestas , Espécies Introduzidas , Animais , Fagus , Herbivoria , Larva , Lepidópteros , Nova Zelândia , Pinus , Vespas
12.
J Anim Ecol ; 84(2): 364-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25279836

RESUMO

Incorporating the evolutionary history of species into community ecology enhances understanding of community composition, ecosystem functioning and responses to environmental changes. Phylogenetic history might partly explain the impact of fragmentation and land-use change on assemblages of interacting organisms and even determine potential cascading effects across trophic levels. However, it remains unclear whether phylogenetic diversity of basal resources is reflected at higher trophic levels in the food web. In particular, phylogenetic determinants of community structure have never been incorporated into habitat edge studies, even though edges are recognized as key factors affecting communities in fragmented landscapes. Here, we test whether phylogenetic diversity at different trophic levels (plants, herbivores and parasitoids) and signals of co-evolution (i.e. phylogenetic congruence) among interacting trophic levels change across an edge gradient between native and plantation forests. To ascertain whether there is a signal of co-evolution across trophic levels, we test whether related consumer species generally feed on related resource species. We found differences across trophic levels in how their phylogenetic diversity responded to the habitat edge gradient. Plant and native parasitoid phylogenetic diversity changed markedly across habitats, while phylogenetic variability of herbivores (which were predominantly native) did not change across habitats, though phylogenetic evenness declined in plantation interiors. Related herbivore species did not appear to feed disproportionately on related plant species (i.e. there was no signal of co-evolution) even when considering only native species, potentially due to the high trophic generality of herbivores. However, related native parasitoid species tended to feed on related herbivore species, suggesting the presence of a co-evolutionary signal at higher trophic levels. Moreover, this signal was stronger in plantation forests, indicating that this habitat may impose stresses on parasitoids that constrain them to attack only host species for which they are best adapted. Overall, changes in land use across native to plantation forest edges differentially affected phylogenetic diversity across trophic levels, and may also exert a strong selective pressure for particular co-evolved herbivore-parasitoid interactions.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Animais , Evolução Biológica , Cadeia Alimentar , Herbivoria/classificação , Larva/parasitologia , Lepidópteros/classificação , Lepidópteros/parasitologia , Nova Zelândia , Parasitos/classificação , Plantas/classificação , Plantas/parasitologia
13.
Ecology ; 95(7): 1888-96, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25163121

RESUMO

Complementary resource use and redundancy of species that fulfill the same ecological role are two mechanisms that can respectively increase and stabilize process rates in ecosystems. For example, predator complementarity and redundancy can determine prey consumption rates and their stability, yet few studies take into account the multiple predator species attacking multiple prey at different rates in natural communities. Thus, it remains unclear whether these biodiversity mechanisms are important determinants of consumption in entire predator-prey assemblages, such that food-web interaction structure determines community-wide consumption and stability. Here, we use empirical quantitative food webs to study the community-wide effects of functional complementarity and redundancy of consumers (parasitoids) on herbivore control in temperate forests. We find that complementarity in host resource use by parasitoids was a strong predictor of absolute parasitism rates at the community level and that redundancy in host-use patterns stabilized community-wide parasitism rates in space, but not through time. These effects can potentially explain previous contradictory results from predator diversity research. Phylogenetic diversity (measured using taxonomic distance) did not explain functional complementarity or parasitism rates, so could not serve as a surrogate measure for functional complementarity. Our study shows that known mechanisms underpinning predator diversity effects on both functioning and stability can easily be extended to link food webs to ecosystem functioning.


Assuntos
Cadeia Alimentar , Lepidópteros/parasitologia , Modelos Biológicos , Animais , Herbivoria , Interações Hospedeiro-Parasita , Larva/parasitologia , Comportamento Predatório , Especificidade da Espécie , Árvores
14.
Nat Commun ; 15(1): 3236, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622174

RESUMO

Insects sustain key ecosystem functions, but how their activity varies across the day-night cycle and the underlying drivers are poorly understood. Although entomologists generally expect that more insects are active at night, this notion has not been tested with empirical data at the global scale. Here, we assemble 331 quantitative comparisons of the abundances of insects between day and night periods from 78 studies worldwide and use multi-level meta-analytical models to show that insect activity is on average 31.4% (CI: -6.3%-84.3%) higher at night than in the day. We reveal diel preferences of major insect taxa, and observe higher nocturnal activity in aquatic taxa than in terrestrial ones, as well as in warmer environments. In a separate analysis of the small subset of studies quantifying diel patterns in taxonomic richness (31 comparisons from 13 studies), we detect preliminary evidence of higher nocturnal richness in tropical than temperate communities. The higher overall (but variable) nocturnal activity in insect communities underscores the need to address threats such as light pollution and climate warming that may disproportionately impact nocturnal insects.


Assuntos
Ecossistema , Insetos , Animais , Clima
15.
Sci Total Environ ; 945: 174050, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906290

RESUMO

Anthelmintic residues in livestock dung can adversely affect beneficial organisms. Targeted selective treatment (TST) of a reduced proportion of livestock with anthelmintics can slow resistance development in gastrointestinal nematodes by providing residue-free dung which could also benefit non-target organisms. We tested effects of TST on survival and reproduction of the dung beetle Onthophagus taurus (Scarabaeidae) in a factorial glasshouse experiment (Experimental treatments: five TST levels, 0.00, 0.25, 0.50, 0.75, 1.00 x four ivermectin concentrations, 125, 250, 375, 500 ppb). Each mesocosm comprised a 60 L bin containing sand, four dung pats and six pairs of adult beetles (F0 generation). No effects of TST level and ivermectin concentration on mortality of F0 adults after one week were observed. F0 adult brood ball production was affected by TST level, particularly at high ivermectin concentrations. Brood ball production increased as more untreated pats became available, with greater increases at higher ivermectin concentrations. We tested for evidence of a reported attraction of dung beetles to ivermectin-treated dung using a novel glitter-marker to trace the origin of dung used in brood balls. Where mesocosms contained both dung types, the proportion of brood balls created from untreated dung showed no statistical difference from the null expectation based on untreated dung availability in the mesocosm. Emergence of F1 adults was affected by the increase in TST, with this effect dependent on concentration. Treatments with concentrations of 250-500 ppb had the lowest emergence rates (ca. 5-20 % in mesocosms where all dung pats were treated) but emergence rates increased with TST level, reaching 68-88 % emergence where no dung pats were treated with ivermectin. Ivermectin-induced mortality occurred predominantly at egg and first instar stages. TST can provide refuges for dung beetles offering a strategy for livestock producers to maintain livestock welfare whilst benefiting from ecosystem services provided by important insects.

16.
Ecology ; 105(4): e4260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353290

RESUMO

There is strong trait dependence in species-level responses to environmental change and their cascading effects on ecosystem functioning. However, there is little understanding of whether intraspecific trait variation (ITV) can also be an important mechanism mediating environmental effects on ecosystem functioning. This is surprising, given that global change processes such as habitat fragmentation and the creation of forest edges drive strong trait shifts within species. On 20 islands in the Thousand Island Lake, China, we quantified intraspecific leaf trait shifts of a widely distributed shrub species, Vaccinium carlesii, in response to habitat fragmentation. Using a reciprocal transplant decomposition experiment between forest edge and interior on 11 islands with varying areas, we disentangled the relative effects of intraspecific leaf trait variation versus altered environmental conditions on leaf decomposition rates in forest fragments. We found strong intraspecific variation in leaf traits in response to edge effects, with a shift toward recalcitrant leaves with low specific leaf area and high leaf dry matter content from forest interior to the edge. Using structural equation modeling, we showed that such intraspecific leaf trait response to habitat fragmentation had translated into significant plant afterlife effects on leaf decomposition, leading to decreased leaf decomposition rates from the forest interior to the edge. Importantly, the effects of intraspecific leaf trait variation were additive to and stronger than the effects from local environmental changes due to edge effects and habitat loss. Our experiment provides the first quantitative study showing that intraspecific leaf trait response to edge effects is an important driver of the decrease in leaf decomposition rate in fragmented forests. By extending the trait-based response-effect framework toward the individual level, intraspecific variation in leaf economics traits can provide the missing functional link between environmental change and ecological processes. These findings suggest an important area for future research on incorporating ITV to understand and predict changes in ecosystem functioning in the context of global change.


Assuntos
Ecossistema , Florestas , Plantas , Clima , Folhas de Planta/fisiologia
17.
Ecology ; 105(7): e4328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782017

RESUMO

Since 1968, the Australian Dung Beetle Project has carried out field releases of 43 deliberately introduced dung beetle species for the biological control of livestock dung and dung-breeding pests. Of these, 23 species are known to have become established. For most of these species, sufficient time has elapsed for population expansion to fill the extent of their potential geographic range through both natural and human-assisted dispersal. Consequently, over the last 20 years, extensive efforts have been made to quantify the current distribution of these introduced dung beetles, as well as the seasonal and spatial variation in their activity levels. Much of these data and their associated metadata have remained unpublished, and they have not previously been synthesized into a cohesive dataset. Here, we collate and report data from the three largest dung beetle monitoring projects from 2001 to 2022. Together, these projects encompass data collected from across Australia, and include records for all 23 species of established dung beetles introduced for biocontrol purposes. In total, these data include 22,718 presence records and 213,538 absence records collected during 10,272 sampling events at 546 locations. Most presence records (97%) include abundance data. In total, 1,752,807 dung beetles were identified as part of these data. The distributional occurrence and abundance data can be used to explore questions such as factors influencing dung beetle species distributions, dung beetle biocontrol, and insect-mediated ecosystem services. These data are provided under a CC-BY-NC 4.0 license and users are encouraged to cite this data paper when using the data.


Assuntos
Besouros , Espécies Introduzidas , Besouros/fisiologia , Animais , Austrália , Fatores de Tempo , Distribuição Animal , Dinâmica Populacional , Densidade Demográfica
18.
Ecol Lett ; 16(10): 1221-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23931035

RESUMO

Landscape ecology plays a vital role in understanding the impacts of land-use change on biodiversity, but it is not a predictive discipline, lacking theoretical models that quantitatively predict biodiversity patterns from first principles. Here, we draw heavily on ideas from phylogenetics to fill this gap, basing our approach on the insight that habitat fragments have a shared history. We develop a landscape 'terrageny', which represents the historical spatial separation of habitat fragments in the same way that a phylogeny represents evolutionary divergence among species. Combining a random sampling model with a terrageny generates numerical predictions about the expected proportion of species shared between any two fragments, the locations of locally endemic species, and the number of species that have been driven locally extinct. The model predicts that community similarity declines with terragenetic distance, and that local endemics are more likely to be found in terragenetically distinctive fragments than in large fragments. We derive equations to quantify the variance around predictions, and show that ignoring the spatial structure of fragmented landscapes leads to over-estimates of local extinction rates at the landscape scale. We argue that ignoring the shared history of habitat fragments limits our ability to understand biodiversity changes in human-modified landscapes.


Assuntos
Biodiversidade , Ecologia/métodos , Ecossistema , Modelos Biológicos , Animais , Brasil , Filogenia , Reprodutibilidade dos Testes
19.
Proc Biol Sci ; 280(1773): 20132549, 2013 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-24174117

RESUMO

Humankind's ongoing battle with pest species spans millennia. Pests cause or carry disease, damage or consume food crops and other resources, and drive global environmental change. Conventional approaches to pest management usually involve lethal control, but such approaches are costly, of varying efficiency and often have ethical issues. Thus, pest management via control of reproductive output is increasingly considered an optimal solution. One of the most successful such 'fertility control' strategies developed to date is the sterile male technique (SMT), in which large numbers of sterile males are released into a population each generation. However, this approach is time-consuming, labour-intensive and costly. We use mathematical models to test a new twist on the SMT, using maternally inherited mitochondrial (mtDNA) mutations that affect male, but not female reproductive fitness. 'Trojan females' carrying such mutations, and their female descendants, produce 'sterile-male'-equivalents under natural conditions over multiple generations. We find that the Trojan female technique (TFT) has the potential to be a novel humane approach for pest control. Single large releases and relatively few small repeat releases of Trojan females both provided effective and persistent control within relatively few generations. Although greatest efficacy was predicted for high-turnover species, the additive nature of multiple releases made the TFT applicable to the full range of life histories modelled. The extensive conservation of mtDNA among eukaryotes suggests this approach could have broad utility for pest control.


Assuntos
DNA Mitocondrial/genética , Infertilidade Masculina , Mutação , Controle Biológico de Vetores/métodos , Animais , Simulação por Computador , Feminino , Masculino , Modelos Biológicos , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA