Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33531361

RESUMO

Fisheries have reduced the abundances of large piscivores-such as gadids (cod, pollock, etc.) and tunas-in ecosystems around the world. Fisheries also target smaller species-such as herring, capelin, and sprat-that are important parts of the piscivores' diets. It has been suggested that harvesting of these so-called forage fish will harm piscivores. Multispecies models used for fisheries assessments typically ignore important facets of fish community dynamics, such as individual-level bioenergetics and/or size structure. We test the effects of fishing for both forage fish and piscivores using a dynamic, multitrophic, size-structured, bioenergetics model of the Baltic Sea. In addition, we analyze historical patterns in piscivore-biomass declines and fishing mortalities of piscivores and forage fish using global fish-stock assessment data. Our community-dynamics model shows that piscivores benefit from harvesting of their forage fish when piscivore fishing mortality is high. With substantial harvesting of forage fish, the piscivores can withstand higher fishing mortality. On the other hand, when piscivore fishing mortality is low, piscivore biomass decreases with more fishing of the forage fish. In accordance with these predictions, our statistical analysis of global fisheries data shows a positive interaction between the fishing mortalities of forage-fish stocks and piscivore stocks on the strength of piscivore-biomass declines. While overfishing of forage fish must be prevented, our study shows that reducing fishing pressures on forage fish may have unwanted negative side effects on piscivores. In some cases, decreasing forage-fish exploitation could cause declines, or even collapses, of piscivore stocks.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Peixes/fisiologia , Animais , Biomassa , Ecossistema , Dinâmica Populacional
2.
Proc Natl Acad Sci U S A ; 116(27): 13276-13281, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31196956

RESUMO

Cooperation can be sustained by institutions that punish free-riders. Such institutions, however, tend to be subverted by corruption if they are not closely watched. Monitoring can uphold the enforcement of binding agreements ensuring cooperation, but this usually comes at a price. The temptation to skip monitoring and take the institution's integrity for granted leads to outbreaks of corruption and the breakdown of cooperation. We model the corresponding mechanism by means of evolutionary game theory, using analytical methods and numerical simulations, and find that it leads to sustained or damped oscillations. The results confirm the view that corruption is endemic and transparency a major factor in reducing it.


Assuntos
Crime , Comportamento Social , Comportamento Cooperativo , Teoria dos Jogos , Humanos , Modelos Teóricos , Punição
3.
New Phytol ; 231(6): 2125-2141, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34131932

RESUMO

Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.


Assuntos
Ecossistema , Plantas , Mudança Climática , Folhas de Planta , Fenômenos Fisiológicos Vegetais
4.
J Theor Biol ; 526: 110280, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32333978

RESUMO

According to the competitive-exclusion principle, the number n of regulating variables describing a given community dynamics is an upper bound on the number of species (or types or morphs) that can coexist at equilibrium. On occasion, it is possible to reformulate a model with a lower number of regulating variables than appeared in the initial specification. We call the smallest number of such variables the dimension of the environmental feedback, or environmental dimension for short. For studying which species can invade a community, it is enough to know the sign of each species' long-term growth rate, i.e., invasion fitness. Therefore, different indicators of population growth - so-called fitness proxies, such as the basic reproduction number-are sometimes preferred. However, as we show, different fitness proxies may have different dimensions. Fundamental characteristics such as the environmental dimension should not depend on such arbitrary choices. Here, we resolve this difficulty by introducing a refined definition of environmental dimension that focuses on neutral fitness contours. On this basis, we show that this definition of environmental dimension is not only unambiguous, i.e., independent of the choice of fitness proxy, but also constructive, i.e., applicable without needing to assess an infinite number of possible fitness proxies. We then investigate how to determine environmental dimensions by analysing the two components of the environmental feedback: the impact map describing how a community's resident species affect the regulating variables and the sensitivity map describing how population growth depends on the regulating variables. The dimension of the impact map is lower than n when the set of feasible environments is of lower dimension than n, and the dimension of the sensitivity map is lower than n when not all n regulating variables affect the sign of population growth independently. While the minimum of the dimensions of the impact and sensitivity maps provides an upper bound on the environmental dimension, the combined effect of the two maps can result in an even lower environmental dimension, which happens when the sensitivity map is insensitive to some aspects of the impact map's image. To facilitate the applications of the framework introduced here, we illustrate all key concepts with detailed worked examples. In view of these results, we claim that the environmental dimension is the ultimate generalization of the traditional and widely used notions of the "number of regulating variables" or the "number of limiting factors", and is thus the sharpest generally applicable upper bound on the number of species that can robustly coexist in a community.

5.
PLoS Comput Biol ; 16(1): e1007483, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914166

RESUMO

Spatially extended ecological public goods, such as forests, grasslands, and fish stocks, are at risk of being overexploited by selfish consumers-a phenomenon widely recognized as the 'tragedy of the commons.' The interplay of spatial and ecological dimensions introduces new features absent in non-spatial ecological contexts, such as consumer mobility, local information availability, and strategy evolution through social learning in neighborhoods. It is unclear how these features interact to influence the harvesting and dispersal strategies of consumers. To answer these questions, we develop and analyze an individual-based, spatially structured, eco-evolutionary model with explicit resource dynamics. We report the following findings. (1) When harvesting efficiency is low, consumers evolve a sedentary consumption strategy, through which the resource is harvested sustainably, but with harvesting rates far below their maximum sustainable value. (2) As harvesting efficiency increases, consumers adopt a mobile 'consume-and-disperse' strategy, which is sustainable, equitable, and gives maximum sustainable yield. (3) A further increase in harvesting efficiency leads to large-scale overexploitation. (4) If costs of dispersal are significant, increased harvesting efficiency also leads to social inequality between frugal sedentary consumers and overexploitative mobile consumers. Whereas overexploitation can occur without social inequality, social inequality always leads to overexploitation. Thus, we identify four conditions that-while being characteristic of technological progress in modern societies-risk social inequality and overexploitation: high harvesting efficiency, moderately low costs of dispersal, high consumer density, and the tendency of consumers to adopt new strategies rapidly. We also show how access to global information-another feature widespread in modern societies-helps mitigate these risks.


Assuntos
Ciências Biocomportamentais , Comportamento do Consumidor , Ecologia , Fatores Socioeconômicos , Biologia Computacional , Humanos
6.
Am Nat ; 196(4): E88-E109, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32970463

RESUMO

AbstractMany species are subject to seasonal cycles in resource availability, affecting the timing of their reproduction. Using a stage-structured consumer-resource model in which juvenile development and maturation are resource dependent, we study how a species' reproductive schedule evolves, dependent on the seasonality of its resource. We find three qualitatively different reproduction modes. First, continuous income breeding (with adults reproducing throughout the year) evolves in the absence of significant seasonality. Second, seasonal income breeding (with adults reproducing unless they are starving) evolves when resource availability is sufficiently seasonal and juveniles are more efficient resource foragers. Third, seasonal capital breeding (with adults reproducing partly through the use of energy reserves) evolves when resource availability is sufficiently seasonal and adults are more efficient resource foragers. Such capital breeders start reproduction already while their offspring are still experiencing starvation. Changes in seasonality lead to continuous transitions between continuous and seasonal income breeding, but the change between income and capital breeding involves a hysteresis pattern, such that a population's evolutionarily stable reproduction pattern depends on its initial one. Taken together, our findings show how adaptation to seasonal environments can result in a rich array of outcomes, exhibiting seasonal or continuous reproduction with or without energy reserves.


Assuntos
Evolução Biológica , Reprodução/fisiologia , Estações do Ano , Fenômenos Fisiológicos da Nutrição Animal , Animais
7.
J Theor Biol ; 506: 110374, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32634386

RESUMO

It is well recognized that spatial heterogeneity and overall productivity have important consequences for the diversity and community structure of food webs. Yet, few, if any, studies have considered the effects of heterogeneous spatial distributions of primary production. Here, we theoretically investigate how the variance and autocorrelation length of primary production affect properties of evolved food webs consisting of one autotroph and several heterotrophs. We report the following findings. (1) Diversity increases with landscape variance and is unimodal in autocorrelation length. (2) Trophic level increases with landscape variance and is unimodal in autocorrelation length. (3) The extent to which the spatial distribution of heterotrophs differ from that of the autotroph increases with landscape variance and decreases with autocorrelation length. (4) Components of initial disruptive selection experienced by the ancestral heterotroph predict properties of the final evolved communities. Prior to our study reported here, several authors had hypothesized that diversity increases with the landscape variance of productivity. Our results support their hypothesis and contribute new facets by providing quantitative predictions that also account for autocorrelation length and additional properties of the evolved communities.


Assuntos
Ecossistema , Cadeia Alimentar
8.
J Math Biol ; 80(7): 2141-2226, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32440889

RESUMO

A set of axioms is formulated characterizing ecologically plausible community dynamics. Using these axioms, it is proved that the transients following an invasion into a sufficiently stable equilibrium community by a mutant phenotype similar to one of the community's finitely many resident phenotypes can always be approximated by means of an appropriately chosen Lotka-Volterra model. To this end, the assumption is made that similar phenotypes in the community form clusters that are well-separated from each other, as is expected to be generally the case when evolution proceeds through small mutational steps. Each phenotypic cluster is represented by a single phenotype, which we call an approximate phenotype and assign the cluster's total population density. We present our results in three steps. First, for a set of approximate phenotypes with arbitrary equilibrium population densities before the invasion, the Lotka-Volterra approximation is proved to apply if the changes of the population densities of these phenotypes are sufficiently small during the transient following the invasion. Second, quantitative conditions for such small changes of population densities are derived as a relationship between within-cluster differences and the leading eigenvalue of the community's Jacobian matrix evaluated at the equilibrium population densities before the invasion. Third, to demonstrate the utility of our results, the 'invasion implies substitution' result for monomorphic populations is extended to arbitrarily polymorphic populations consisting of well-recognizable and -separated clusters.


Assuntos
Evolução Biológica , Modelos Biológicos , Animais , Ecossistema , Aptidão Genética , Modelos Lineares , Conceitos Matemáticos , Modelos Genéticos , Mutação , Fenótipo , Densidade Demográfica , Dinâmica Populacional/estatística & dados numéricos , Seleção Genética
9.
Proc Natl Acad Sci U S A ; 114(13): E2719-E2728, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28283658

RESUMO

To explain diversity in forests, niche theory must show how multiple plant species coexist while competing for the same resources. Although successional processes are widespread in forests, theoretical work has suggested that differentiation in successional strategy allows only a few species stably to coexist, including only a single shade tolerant. However, this conclusion is based on current niche models, which encode a very simplified view of plant communities, suggesting that the potential for niche differentiation has remained unexplored. Here, we show how extending successional niche models to include features common to all vegetation-height-structured competition for light under a prevailing disturbance regime and two trait-mediated tradeoffs in plant function-enhances the diversity of species that can be maintained, including a diversity of shade tolerants. We identify two distinct axes of potential niche differentiation, corresponding to the traits leaf mass per unit leaf area and height at maturation. The first axis allows for coexistence of different shade tolerances and the second axis for coexistence among species with the same shade tolerance. Addition of this second axis leads to communities with a high diversity of shade tolerants. Niche differentiation along the second axis also generates regions of trait space wherein fitness is almost equalized, an outcome we term "evolutionarily emergent near-neutrality." For different environmental conditions, our model predicts diverse vegetation types and trait mixtures, akin to observations. These results indicate that the outcomes of successional niche differentiation are richer than previously thought and potentially account for mixtures of traits and species observed in forests worldwide.


Assuntos
Biodiversidade , Florestas , Modelos Teóricos , Dinâmica Populacional
10.
Am Nat ; 193(5): E116-E131, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31002571

RESUMO

Almost all animal species undergo metamorphosis, even though empirical data show that this life-history strategy evolved only a few times. Why is metamorphosis so widespread, and why has it evolved? Here we study the evolution of metamorphosis by using a fully size-structured population model in conjunction with the adaptive-dynamics approach. We assume that individuals compete for two food sources; one of these, the primary food source, is available to individuals of all sizes. The secondary food source is available only to large individuals. Without metamorphosis, unresolvable tensions arise for species faced with the opportunity of specializing on such a secondary food source. We show that metamorphosis can evolve as a way to resolve these tensions, such that small individuals specialize on the primary food source while large individuals specialize on the secondary food source. We find, however, that metamorphosis evolves only when the supply rate of the secondary food source exceeds a high threshold. Individuals postpone metamorphosis when the ecological conditions under which metamorphosis originally evolved deteriorate but will often not abandon this life-history strategy, even if it causes population extinction through evolutionary trapping. In summary, our results show that metamorphosis is not easy to evolve but that, once evolved, it is hard to lose. These findings can explain the widespread occurrence of metamorphosis in the animal kingdom despite its few evolutionary origins.


Assuntos
Evolução Biológica , Tamanho Corporal , Dieta , Metamorfose Biológica , Modelos Biológicos , Animais
11.
Proc Biol Sci ; 286(1895): 20181949, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30963948

RESUMO

Dispersal is a key process for the emergence of social and biological behaviours. Yet, little attention has been paid to dispersal's effects on the evolution of cooperative behaviour in structured populations. To address this issue, we propose two new dispersal modes, parent-preferred and offspring-preferred dispersal, incorporate them into the birth-death update rule, and consider the resultant strategy evolution in the prisoner's dilemma on random-regular, small-world, and scale-free networks, respectively. We find that parent-preferred dispersal favours the evolution of cooperation in these different types of population structures, while offspring-preferred dispersal inhibits the evolution of cooperation in homogeneous populations. On scale-free networks when the strength of parent-preferred dispersal is weak, cooperation can be enhanced at intermediate strengths of offspring-preferred dispersal, and cooperators can coexist with defectors at high strengths of offspring-preferred dispersal. Moreover, our theoretical analysis based on the pair-approximation method corroborates the evolutionary outcomes on random-regular networks. We also incorporate the two new dispersal modes into three other update rules (death-birth, imitation, and pairwise comparison updating), and find that similar results about the effects of parent-preferred and offspring-preferred dispersal can again be observed in the aforementioned different types of population structures. Our work, thus, unveils robust effects of preferential dispersal modes on the evolution of cooperation in different interactive environments.


Assuntos
Distribuição Animal , Comportamento Cooperativo , Animais , Teoria dos Jogos , Modelos Biológicos , Pais , Dinâmica Populacional , Dilema do Prisioneiro
12.
Proc Natl Acad Sci U S A ; 113(52): 15030-15035, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27940913

RESUMO

The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.


Assuntos
Evolução Molecular , Pesqueiros , Gadus morhua/crescimento & desenvolvimento , Algoritmos , Animais , Evolução Biológica , Biomassa , Tamanho Corporal , Ecologia , Feminino , Variação Genética , Estágios do Ciclo de Vida , Funções Verossimilhança , Masculino , Fenótipo , Dinâmica Populacional , Probabilidade , Fatores de Tempo
13.
Am Nat ; 192(1): 62-71, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897809

RESUMO

Body size is a key determinant of mortality risk. In natural populations, a broad range of relationships are observed between body size and mortality, including positive and negative correlations. Previous evolutionary modeling has shown that negatively size-dependent mortality can result in life-history bistability, with early maturation at small size and late maturation at large size representing alternative fitness optima. Here we present a general analysis of conditions under which such life-history bistabilities can occur, reporting the following findings. First, alternative fitness optima can be found for any arbitrarily chosen forms of mortality functions, including functions according to which mortality smoothly declines with size. Second, while bistabilities occur more readily under negatively size-dependent mortality, our analysis reveals that they can also emerge under positively size-dependent mortality, a feature missed in earlier work. Third, any sharp drop of mortality with size facilitates bistability. Fourth, if the mortality regime involves more than one such sharp drop, multistable life histories can occur, with alternative fitness optima straddling each of the drops. Paradoxically, our findings imply that, fifth, a species-poor predator community capable of creating a rugged mortality regime is conducive to evolutionary multistability, which could act as a stepping stone toward prey life-history diversification, whereas a species-rich predator community that results in a smoothly varying mortality regime may prevent diversification through this pathway.


Assuntos
Tamanho Corporal , Aptidão Genética , Características de História de Vida , Modelos Biológicos , Mortalidade , Animais , Comportamento Predatório
14.
J Theor Biol ; 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29551543

RESUMO

The number of regulating variables n in a given system is an upper bound to the number of coexisting species at equilibrium according to the competitive exclusion principle. However, it may be possible to formulate the model with a lower number of regulating variables, the smallest number of which is the dimension of the environmental feedback. Here we investigate how that dimension can be determined by analysing the two parts of environmental feedback: The impact map describes how the extant species affect the regulating variables, and the sensitivity map describes how population growth depends on the regulating variables. For the equilibrium condition it is enough to know the sign of each population growth rate, and therefore as the sensitivity map, different measures of population growth can be chosen, such as the basic reproduction number. The dimension of the environmental feedback must not depend on that choice. Different sensitivity maps can have different global dimensions, on which the definition thus cannot be based. Here we show that the local sensitivity dimension is independent of the choice, so that the concept is well-defined. The impact dimension is lower than n when the feasible set of environments is of lower dimension than n, and sensitivity dimension is lower than n when not all environmental variables affect the sign of population growth independently. Their combined effect can result in even lower environmental dimension. We illustrate such situations with examples. In conclusion, the dimension of environmental feedback gives valuable information about the potential coexistence of species.

15.
J Theor Biol ; 443: 56-65, 2018 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-29337264

RESUMO

Cooperation is ubiquitous in biological and social systems, even though cooperative behavior is often costly and at risk of exploitation by non-cooperators. Several studies have demonstrated that indirect reciprocity, whereby some members of a group observe the behaviors of their peers and use this information to discriminate against previously uncooperative agents in the future, can promote prosocial behavior. Some studies have shown that differential propensities of interacting among and between different types of agents (interaction assortment) can increase the effectiveness of indirect reciprocity. No previous studies have, however, considered differential propensities of observing the behaviors of different types of agents (information assortment). Furthermore, most previous studies have assumed that discriminators possess perfect information about others and incur no costs for gathering and storing this information. Here, we (1) consider both interaction assortment and information assortment, (2) assume discriminators have limited information about others, and (3) introduce a cost for information gathering and storage, in order to understand how the ability of discriminators to stabilize cooperation is affected by these steps toward increased realism. We report the following findings. First, cooperation can persist when agents preferentially interact with agents of other types or when discriminators preferentially observe other discriminators, even when they have limited information. Second, contrary to intuition, increasing the amount of information available to discriminators can exacerbate defection. Third, introducing costs of gathering and storing information makes it more difficult for discriminators to stabilize cooperation. Our study is one of only a few studies to date that show how negative interaction assortment can promote cooperation and broadens the set of circumstances in which it is know that cooperation can be maintained.


Assuntos
Ciências Biocomportamentais , Comportamento Cooperativo , Modelos Biológicos , Humanos
16.
Nature ; 484(7395): 506-9, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22466286

RESUMO

Empirical data indicate that sexual preferences are critical for maintaining species boundaries, yet theoretical work has suggested that, on their own, they can have only a minimal role in maintaining biodiversity. This is because long-term coexistence within overlapping ranges is thought to be unlikely in the absence of ecological differentiation. Here we challenge this widely held view by generalizing a standard model of sexual selection to include two ubiquitous features of populations with sexual selection: spatial variation in local carrying capacity, and mate-search costs in females. We show that, when these two features are combined, sexual preferences can single-handedly maintain coexistence, even when spatial variation in local carrying capacity is so slight that it might go unnoticed empirically. This theoretical study demonstrates that sexual selection alone can promote the long-term coexistence of ecologically equivalent species with overlapping ranges, and it thus provides a novel explanation for the maintenance of species diversity.


Assuntos
Biodiversidade , Ciclídeos/fisiologia , Lagos , Preferência de Acasalamento Animal/fisiologia , Alelos , Animais , Ciclídeos/genética , Feminino , Masculino , Modelos Biológicos , Especificidade da Espécie , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 111(49): 17356-62, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25404317

RESUMO

The contemporary global community is increasingly interdependent and confronted with systemic risks posed by the actions and interactions of actors existing beneath the level of formal institutions, often operating outside effective governance structures. Frequently, these actors are human agents, such as rogue traders or aggressive financial innovators, terrorists, groups of dissidents, or unauthorized sources of sensitive or secret information about government or private sector activities. In other instances, influential "actors" take the form of climate change, communications technologies, or socioeconomic globalization. Although these individual forces may be small relative to state governments or international institutions, or may operate on long time scales, the changes they catalyze can pose significant challenges to the analysis and practice of international relations through the operation of complex feedbacks and interactions of individual agents and interconnected systems. We call these challenges "femtorisks," and emphasize their importance for two reasons. First, in isolation, they may be inconsequential and semiautonomous; but when embedded in complex adaptive systems, characterized by individual agents able to change, learn from experience, and pursue their own agendas, the strategic interaction between actors can propel systems down paths of increasing, even global, instability. Second, because their influence stems from complex interactions at interfaces of multiple systems (e.g., social, financial, political, technological, ecological, etc.), femtorisks challenge standard approaches to risk assessment, as higher-order consequences cascade across the boundaries of socially constructed complex systems. We argue that new approaches to assessing and managing systemic risk in international relations are required, inspired by principles of evolutionary theory and development of resilient ecological systems.

18.
J Theor Biol ; 405: 58-65, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27049047

RESUMO

Despite modern medical interventions, infectious diseases continue to generate huge socio-economic losses. The benefits of eradicating a disease are therefore high. While successful with smallpox and rinderpest, many other eradication attempts have failed. Eradications require huge and costly efforts, which can be sustained only if sufficient progress can be achieved. While initial successes are usually obtained more easily, progress often becomes harder as a disease becomes rare in the eradication endgame. A long eradication tail of slowly decreasing incidence levels can frustrate eradication efforts, as it becomes unclear whether progress toward eradication is still being made and how much more needs to be invested to push the targeted disease beyond its extinction threshold. Realistic disease dynamics are complicated by evolutionary responses to interventions and by interactions among different temporal and spatial scales. Models accounting for these complexities are required for understanding the shapes of eradication tails. In particular, such models allow predicting how hard or costly eradication will be, and may even inform in which manner progress has to be assessed during the eradication endgame. Here we outline a general procedure by analyzing the eradication tails of generic SIS diseases, taking into account two major ingredients of realistic complexity: a group-structured host population in which host contacts within groups are more likely than host contacts between groups, and virulence evolution subject to a trade-off between host infectivity within groups and host mobility among groups. Disentangling the epidemiological, evolutionary, and economic determinants of eradication tails, we show how tails of different shapes arise depending on salient model parameters and on how the extinction threshold is approached. We find that disease evolution generally extends the eradication tail and show how the cost structure of eradication measures plays a key role in shaping eradication tails.


Assuntos
Evolução Biológica , Doenças Transmissíveis/economia , Doenças Transmissíveis/epidemiologia , Erradicação de Doenças/economia , Erradicação de Doenças/estatística & dados numéricos , Modelos Biológicos
19.
Proc Natl Acad Sci U S A ; 110(30): 12259-64, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836660

RESUMO

Fish stocks experiencing high fishing mortality show a tendency to mature earlier and at a smaller size, which may have a genetic component and therefore long-lasting economic and biological effects. To date, the economic effects of such ecoevolutionary dynamics have not been empirically investigated. Using 70 y of data, we develop a bioeconomic model for Northeast Arctic cod to compare the economic yield in a model in which life-history traits can vary only through phenotypic plasticity with a model in which, in addition, genetic changes can occur. We find that evolutionary changes toward faster growth and earlier maturation occur consistently even if a stock is optimally managed. However, if a stock is managed optimally, the evolutionary changes actually increase economic yield because faster growth and earlier maturation raise the stock's productivity. The optimal fishing mortality is almost identical for the evolutionary and nonevolutionary model and substantially lower than what it has been historically. Therefore, the costs of ignoring evolution under optimal management regimes are negligible. However, if fishing mortality is as high as it has been historically, evolutionary changes may result in economic losses, but only if the fishery is selecting for medium-sized individuals. Because evolution facilitates growth, the fish are younger and still immature when they are susceptible to getting caught, which outweighs the increase in productivity due to fish spawning at an earlier age.


Assuntos
Evolução Biológica , Pesqueiros/economia
20.
J Theor Biol ; 365: 204-16, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25451962

RESUMO

Commercial harvesting is recognized to induce adaptive responses of life-history traits in fish populations, in particular by shifting the age and size at maturation through directional selection. In addition to such evolution of a target stock, the corresponding fishery itself may adapt, in terms of fishing policy, technological progress, fleet dynamics, and adaptive harvest. The aim of this study is to assess how the interplay between natural and artificial selection, in the simplest setting in which a fishery and a target stock coevolve, can lead to disruptive selection, which in turn may cause trait diversification. To this end, we build an eco-evolutionary model for a size-structured population, in which both the stock׳s maturation schedule and the fishery׳s harvest rate are adaptive, while fishing may be subject to a selective policy based on fish size and/or maturity stage. Using numerical bifurcation analysis, we study how the potential for disruptive selection changes with fishing policy, fishing mortality, harvest specialization, life-history tradeoffs associated with early maturation, and other demographic and environmental parameters. We report the following findings. First, fisheries-induced disruptive selection is readily caused by commonly used fishing policies, and occurs even for policies that are not specific for fish size or maturity, provided that the harvest is sufficiently adaptive and large individuals are targeted intensively. Second, disruptive selection is more likely in stocks in which the selective pressure for early maturation is naturally strong, provided life-history tradeoffs are sufficiently consequential. Third, when a fish stock is overexploited, fisheries targeting only large individuals might slightly increase sustainable yield by causing trait diversification (even though the resultant yield always remains lower than the maximum sustainable yield that could be obtained under low fishing mortality, without causing disruptive selection). We discuss the broader implications of our results and highlight how these can be taken into account for designing evolutionarily informed fisheries-management regimes.


Assuntos
Cruzamento/métodos , Pesqueiros/métodos , Peixes/genética , Seleção Genética , Animais , Cruzamento/normas , Pesqueiros/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA