Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(46): E10822-E10829, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30366951

RESUMO

A wide range of mutations in the kinesin motor Kif5A have been linked to a neuronal disorder called hereditary spastic paraplegia (HSP). The position of these mutations can vary, and a range of different motile behaviors have been observed, indicating that the HSP mutants can alter distinct aspects of kinesin mechanochemistry. While focusing on four key HSP-associated mutants, this study examined the structural and dynamic perturbations that arise from these mutations using a series of different computational methods, ranging from bioinformatics analyses to all-atom simulations, that account for solvent effects explicitly. We show that two catalytic domain mutations (R280S and K253N) reduce the microtubule (MT) binding affinity of the kinesin head domains appreciably, while N256S has a much smaller impact. Bioinformatics analysis suggests that the stalk mutation A361V perturbs motor dimerization. Subsequent integration of these effects into a coarse-grained structure-based model of dimeric kinesin revealed that the order-disorder transition of the neck linker is substantially affected, indicating a hampered directionality and processivity of kinesin. The present analyses therefore suggest that, in addition to kinesin-MT binding and coiled-coil dimerization, HSP mutations affecting motor stepping transitions and processivity can lead to disease.


Assuntos
Cinesinas/genética , Paraplegia Espástica Hereditária/genética , Biologia Computacional/métodos , Simulação por Computador , Humanos , Modelos Teóricos , Mutação , Ligação Proteica
2.
Proc Natl Acad Sci U S A ; 115(40): 10052-10057, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224489

RESUMO

Cytoplasmic dyneins play a major role in retrograde cellular transport by moving vesicles and organelles along microtubule filaments. Dyneins are multidomain motor proteins with two heads that coordinate their motion via their interhead tension. Compared with the leading head, the trailing head has a higher detachment rate from microtubules, facilitating the movement. However, the molecular mechanism of such coordination is unknown. To elucidate this mechanism, we performed molecular dynamics simulations on a cytoplasmic dynein with a structure-based coarse-grained model that probes the effect of the interhead tension on the structure. The tension creates a torque that influences the head rotating about its stalk. The conformation of the stalk switches from the α registry to the ß registry during the rotation, weakening the binding affinity to microtubules. The directions of the tension and the torque of the leading head are opposite to those of the trailing head, breaking the structural symmetry between the heads. The leading head transitions less often to the ß registry than the trailing head. The former thus has a greater binding affinity to the microtubule than the latter. We measured the moment arm of the torque from a dynein structure in the simulations to develop a phenomenological model that captures the influence of the head rotating about its stalk on the differential detachment rates of the two heads. Our study provides a consistent molecular picture for interhead coordination via interhead tension.


Assuntos
Citoplasma/química , Dineínas/química , Modelos Químicos , Modelos Moleculares , Animais , Citoplasma/metabolismo , Dineínas/metabolismo , Humanos
3.
Biophys J ; 118(3): 586-599, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952801

RESUMO

The coordination of lipid messenger signaling with cytoskeletal regulation is central to many organelle-specific regulatory processes. This coupling often depends on the function of multidomain scaffolds that orchestrate transient interactions among multiple signaling intermediates and regulatory proteins on organelles. The number of possible scaffold interaction partners and the ability for these interactions to occur at different timescales makes investigations of scaffold functions challenging. This work employs live cell imaging to probe how the multidomain scaffold IQ motif containing GTPase activating protein 1 (IQGAP1) coordinates the activities of proteins affecting local actin polymerization, membrane processing, and phosphoinositide signaling. Using endosomes that are confined by a local actin network as a model system, we demonstrate that IQGAP1 can transition between different actin and endosomal membrane tethered states. Fast scaffold binding/disassociation transitions are shown to be driven by interactions between C-terminal scaffold domains and Rho GTPases at the membrane. Fluctuations in these binding modes are linked to negative regulation of actin polymerization. Although this control governs core elements of IQGAP1 dynamics, actin binding by the N-terminal calponin homology domain of the scaffold is shown to help the scaffold track the temporal development of endosome membrane markers, implying actin associations bolster membrane and actin coordination. Importantly, these effects are not easily distilled purely through standard (static) co-localization analyses or traditional pathway perturbations methods and were resolved by performing dynamic correlation and multiple regression analyses of IQGAP1 scaffold mutants. Using these capabilities with pharmacological inhibition, we provide evidence that membrane tethering is dependent on the activities of the lipid kinase phosphoinositide 3-kinase in addition to the Rho GTPases Rac1 and Cdc42. Overall, these methods and results point to a scaffold tethering mechanism that allows IQGAP1 to help control the amplitude of phosphoinositide lipid messenger signaling by coordinating signaling intermediate activities with the development and disassembly of local actin cytoskeletal networks.


Assuntos
Actinas , GTP Fosfo-Hidrolases , Proteínas Ativadoras de ras GTPase , Humanos , Lipídeos , Fosfatidilinositol 3-Quinases
4.
Proc Natl Acad Sci U S A ; 114(41): E8611-E8617, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973894

RESUMO

Motor proteins are active enzymatic molecules that support important cellular processes by transforming chemical energy into mechanical work. Although the structures and chemomechanical cycles of motor proteins have been extensively investigated, the sensitivity of a motor's velocity in response to a force is not well-understood. For kinesin, velocity is weakly influenced by a small to midrange external force (weak susceptibility) but is steeply reduced by a large force. Here, we utilize a structure-based molecular dynamic simulation to study the molecular origin of the weak susceptibility for a single kinesin. We show that the key step in controlling the velocity of a single kinesin under an external force is the ATP release from the microtubule-bound head. Only under large loading forces can the motor head release ATP at a fast rate, which significantly reduces the velocity of kinesin. It underpins the weak susceptibility that the velocity will not change at small to midrange forces. The molecular origin of this velocity reduction is that the neck linker of a kinesin only detaches from the motor head when pulled by a large force. This prompts the ATP binding site to adopt an open state, favoring ATP release and reducing the velocity. Furthermore, we show that two load-bearing kinesins are incapable of equally sharing the load unless they are very close to each other. As a consequence of the weak susceptibility, the trailing kinesin faces the challenge of catching up to the leading one, which accounts for experimentally observed weak cooperativity of kinesins motors.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Sítios de Ligação , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica
5.
Proc Natl Acad Sci U S A ; 111(3): E334-43, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24402168

RESUMO

Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors.


Assuntos
Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Proteínas de Bactérias/química , Transporte Biológico , Células COS , Chlorocebus aethiops , Citoesqueleto/metabolismo , Doxiciclina/química , Elasticidade , Cinesinas/química , Proteínas Luminescentes/química , Lisossomos/metabolismo , Microtúbulos/metabolismo , Peroxissomos/metabolismo , Reologia , Biologia Sintética , Viscosidade
6.
Soft Matter ; 12(1): 14-21, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26444155

RESUMO

Major cellular processes are supported by various biomolecular motors that usually operate together as teams. We present an overview of the collective dynamics of processive cytokeletal motor proteins based on recent experimental and theoretical investigations. Experimental studies show that multiple motors function with different degrees of cooperativity, ranging from negative to positive. This effect depends on the mechanical properties of individual motors, the geometry of their connections, and the surrounding cellular environment. Theoretical models based on stochastic approaches underline the importance of intermolecular interactions, the properties of single motors, and couplings with cellular medium in predicting the collective dynamics. We discuss several features that specify the cooperativity in motor proteins. Based on this approach a general picture of collective dynamics of motor proteins is formulated, and the future directions and challenges are discussed.


Assuntos
Citoesqueleto/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Citoesqueleto/química , Humanos , Simulação de Dinâmica Molecular , Proteínas Motores Moleculares/química
7.
Breast Cancer Res Treat ; 154(3): 495-508, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26590814

RESUMO

We previously reported using statins was correlated with improved metastasis-free survival in aggressive breast cancer. The purpose of this study was to examine the effect of statins on metastatic colonization by triple-negative breast cancer (TNBC) cells. TNBC cell lines were treated with simvastatin and then studied for cell cycle progression and proliferation in vitro, and metastasis formation in vivo, following injection of statin-treated cells. Reverse-phase protein assay (RPPA) analysis was performed on statin-treated and control breast cancer cells. RNA interference targeting FOXO3a was used to measure the impact of simvastatin on FOXO3a-expressing cells. The prognostic value of FOXO3a mRNA expression was examined in eight public breast cancer gene expression datasets including 1479 patients. Simvastatin increased G1/S-phase arrest of the cell cycle and inhibited both proliferation and migration of TNBC cells in vitro. In vitro pre-treatment and in vivo treatment with simvastatin reduced metastases. Phosphorylated FOXO3a was downregulated after simvastatin treatment in (RPPA) analysis. Ectopic expression of FOXO3a enhanced mammosphere formation and migratory capacity in vitro. Knockdown of FOXO3a attenuated the effect of simvastatin on mammosphere formation and migration. Analysis of public gene expression data demonstrates FOXO3a mRNA downregulation was independently associated with shorter metastasis-free survival in all breast cancers, as well as in TNBC breast cancers. Simvastatin inhibits in vitro endpoints associated with metastasis through a FOXO3a mechanism and reduced metastasis formation in vivo. FOXO3a expression is prognostic for metastasis formation in patient data. Further investigation of simvastatin as a cancer therapy is warranted.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sinvastatina/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos SCID , Pessoa de Meia-Idade , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nucleic Acids Res ; 40(7): 3289-98, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22156404

RESUMO

The number of distinct biomolecules that can be visualized within individual cells and tissue sections via fluorescence microscopy is limited by the spectral overlap of the fluorescent dye molecules that are coupled permanently to their targets. This issue prohibits characterization of important functional relationships between different molecular pathway components in cells. Yet, recent improved understandings of DNA strand displacement reactions now provides opportunities to create programmable labeling and detection approaches that operate through controlled transient interactions between different dynamic DNA complexes. We examined whether erasable molecular imaging probes could be created that harness this mechanism to couple and then remove fluorophore-bearing oligonucleotides to and from DNA-tagged protein markers within fixed cell samples. We show that the efficiency of marker erasing via strand displacement can be limited by non-toehold mediated stand exchange processes that lower the rates that fluorophore-bearing strands diffuse out of cells. Two probe constructions are described that avoid this problem and allow efficient fluorophore removal from their targets. With these modifications, we show one can at least double the number of proteins that can be visualized on the same cells via reiterative in situ labeling and erasing of markers on cells.


Assuntos
Sondas de DNA/química , Hibridização in Situ Fluorescente/métodos , Proteínas/análise , Animais , Células CHO , Cricetinae , Cricetulus , Cinética , Microscopia de Fluorescência , Imagem Molecular/métodos
9.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370626

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a 'genetic priming' method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor IRF1 (interferon response factor 1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFNγ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFNγ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.

10.
J Biol Chem ; 287(5): 3357-65, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22158622

RESUMO

Microtubule-dependent transport is most often driven by collections of kinesins and dyneins that function in either a concerted fashion or antagonistically. Several lines of evidence suggest that cargo transport may not be influenced appreciably by the combined action of multiple kinesins. Yet, as in previous optical trapping experiments, the forces imposed on cargos will vary spatially and temporally in cells depending on a number of local environmental factors, and the influence of these conditions has been largely overlooked. Here, we characterize the dynamics of structurally defined complexes containing multiple kinesins under the controlled loads of an optical force clamp. While demonstrating that there are generic kinetic barriers that restrict the ability of multiple kinesins to cooperate productively, the spatial and temporal properties of applied loads is found to play an important role in the collective dynamics of multiple motor systems. We propose this dependence has implications for intracellular transport processes, especially for bidirectional transport.


Assuntos
Cinesinas/química , Microtúbulos/química , Transporte Biológico/fisiologia , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo
11.
J Biol Chem ; 287(33): 27753-61, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22718762

RESUMO

Characterization of the collective behaviors of different classes of processive motor proteins has become increasingly important to understand various intracellular trafficking and transport processes. This work examines the dynamics of structurally-defined motor complexes containing two myosin Va (myoVa) motors that are linked together via a molecular scaffold formed from a single duplex of DNA. Dynamic changes in the filament-bound configuration of these complexes due to motor binding, stepping, and detachment were monitored by tracking the positions of different color quantum dots that report the position of one head of each myoVa motor on actin. As in studies of multiple kinesins, the run lengths produced by two myosins are only slightly larger than those of single motor molecules. This suggests that internal strain within the complexes, due to asynchronous motor stepping and the resultant stretching of motor linkages, yields net negative cooperative behaviors. In contrast to multiple kinesins, multiple myosin complexes move with appreciably lower velocities than a single-myosin molecule. Although similar trends are predicted by a discrete state stochastic model of collective motor dynamics, these analyses also suggest that multiple myosin velocities and run lengths depend on both the compliance and the effective size of their cargo. Moreover, it is proposed that this unique collective behavior occurs because the large step size and relatively small stalling force of myoVa leads to a high sensitivity of motor stepping rates to strain.


Assuntos
Actinas/química , DNA/química , Miosina Tipo V/química , Actinas/genética , Actinas/metabolismo , Animais , DNA/genética , DNA/metabolismo , Elasticidade , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Adv Mater ; 35(21): e2205709, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871193

RESUMO

Fibrosis remains a significant cause of failure in implanted biomedical devices and early absorption of proteins on implant surfaces has been shown to be a key instigating factor. However, lipids can also regulate immune activity and their presence may also contribute to biomaterial-induced foreign body responses (FBR) and fibrosis. Here it is demonstrated that the surface presentation of lipids on implant affects FBR by influencing reactions of immune cells to materials as well as their resultant inflammatory/suppressive polarization. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) is employed to characterize lipid deposition on implants that are surface-modified chemically with immunomodulatory small molecules. Multiple immunosuppressive phospholipids (phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin) are all found to deposit preferentially on implants with anti-FBR surface modifications in mice. Significantly, a set of 11 fatty acids is enriched on unmodified implanted devices that failed in both mice and humans, highlighting relevance across species. Phospholipid deposition is also found to upregulate the transcription of anti-inflammatory genes in murine macrophages, while fatty acid deposition stimulated the expression of pro-inflammatory genes. These results provide further insights into how to improve the design of biomaterials and medical devices to mitigate biomaterial material-induced FBR and fibrosis.


Assuntos
Corpos Estranhos , Reação a Corpo Estranho , Humanos , Camundongos , Animais , Materiais Biocompatíveis/química , Fibrose , Lipídeos
13.
Chembiochem ; 13(18): 2722-8, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23165916

RESUMO

The regulation of antibody reporting intensities is critical to various in situ fluorescence-imaging analyses. Although such control is often necessary to visualize sparse molecular targets, the ability to tune marker intensities is also essential for highly multiplexed imaging strategies in which marker reporting levels must be tuned both to optimize dynamic detection ranges and to minimize crosstalk between different signals. Existing chemical amplification approaches generally lack such control. Here, we demonstrate that linear and branched DNA complexes can be designed to function as interchangeable building blocks that can be assembled into organized, fluorescence-reporting complexes. We show that the ability to program DNA-strand-displacement reactions between these complexes offers new opportunities to deterministically tune the number of dyes that are coupled to individual antibodies in order both to increase and controllably balance marker reporting levels within fixed cells.


Assuntos
DNA/metabolismo , Imunofluorescência/métodos , DNA/química , Estatmina/química , Estatmina/metabolismo
14.
Opt Lett ; 37(7): 1154-6, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22466179

RESUMO

A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.

15.
Cell Mol Bioeng ; 15(5): 425-437, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36444347

RESUMO

Introduction: While hydrogel encapsulation of cells has been developed to treat multiple diseases, methods to cryopreserve and maintain the composite function of therapeutic encapsulated cell products are still needed to facilitate their storage and distribution. While methods to preserve encapsulated cells, and post-synthesis have received recent attention, effective preservation mediums have not been fully defined. Methods: We employed a two-tiered screen of an initial library of 32 different cryopreservation agent (CPA) formulations composed of different cell-permeable and impermeable agents. Formulations were assayed using dark field microscopy to evaluate alginate hydrogel matrix integrity, followed by cell viability analyses and measurements of functional secretion activity. Results: The structural integrity of large > 1 mm alginate capsules were highly sensitive to freezing and thawing in media alone but could be recovered by a number of CPA formulations containing different cell-permeable and impermeable agents. Subsequent viability screens identified two top-performing CPA formulations that maximized capsule integrity and cell viability after storage at - 80 °C. The top formulation (10% Dimethyl sulfoxide (DMSO) and 0.3 M glucose) was demonstrated to preserve hydrogel integrity and retain cell viability beyond a critical USA FDA set 70% viability threshold while maintaining protein secretion and resultant cell potency. Conclusions: This prioritized screen identified a cryopreservation solution that maintains the integrity of large alginate capsules and yields high viabilities and potency. Importantly, this formulation is serum-free, non-toxic, and can support the development of clinically translatable encapsulated cell-based therapeutics. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00739-7.

16.
Biophys J ; 101(2): 386-95, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21767491

RESUMO

Subcellular cargos are often transported by teams of processive molecular motors, which raises questions regarding the role of motor cooperation in intracellular transport. Although our ability to characterize the transport behaviors of multiple-motor systems has improved substantially, many aspects of multiple-motor dynamics are poorly understood. This work describes a transition rate model that predicts the load-dependent transport behaviors of multiple-motor complexes from detailed measurements of a single motor's elastic and mechanochemical properties. Transition rates are parameterized via analyses of single-motor stepping behaviors, load-rate-dependent motor-filament detachment kinetics, and strain-induced stiffening of motor-cargo linkages. The model reproduces key signatures found in optical trapping studies of structurally defined complexes composed of two kinesin motors, and predicts that multiple kinesins generally have difficulties in cooperating together. Although such behavior is influenced by the spatiotemporal dependence of the applied load, it appears to be directly linked to the efficiency of kinesin's stepping mechanism, and other types of less efficient and weaker processive motors are predicted to cooperate more productively. Thus, the mechanochemical efficiencies of different motor types may determine how effectively they cooperate together, and hence how motor copy number contributes to the regulation of cargo motion.


Assuntos
Cinesinas/metabolismo , Fenômenos Biomecânicos , Elasticidade , Cinética , Microtúbulos/metabolismo , Modelos Biológicos , Pinças Ópticas , Ligação Proteica , Transporte Proteico
17.
Biophys J ; 99(9): 2967-77, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21044594

RESUMO

The number of microtubule motors attached to vesicles, organelles, and other subcellular commodities is widely believed to influence their motile properties. There is also evidence that cells regulate intracellular transport by tuning the number and/or ratio of motor types on cargos. Yet, the number of motors responsible for cargo motion is not easily characterized, and the extent to which motor copy number affects intracellular transport remains controversial. Here, we examined the load-dependent properties of structurally defined motor assemblies composed of two kinesin-1 molecules. We found that a group of kinesins can produce forces and move with velocities beyond the abilities of single kinesin molecules. However, such capabilities are not typically harnessed by the system. Instead, two-kinesin assemblies adopt a range of microtubule-bound configurations while transporting cargos against an applied load. The binding arrangement of motors on their filament dictates how loads are distributed within the two-motor system, which in turn influences motor-microtubule affinities. Most configurations promote microtubule detachment and prevent both kinesins from contributing to force production. These results imply that cargos will tend to be carried by only a fraction of the total number of kinesins that are available for transport at any given time, and provide an alternative explanation for observations that intracellular transport depends weakly on kinesin number in vivo.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Transporte Biológico Ativo , Fenômenos Biofísicos , Elasticidade , Humanos , Técnicas In Vitro , Cinesinas/genética , Cinética , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Motores Moleculares/genética , Pinças Ópticas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Bioconjug Chem ; 21(12): 2327-31, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21080622

RESUMO

A class of reactive DNA circuits was adapted as erasable molecular imaging probes that allow fluorescent reporting complexes to be assembled and disassembled on a biological specimen. Circuit reactions are sequence-dependent and therefore facilitate multiplexed (multicolor) detection. Yet, the ability to disassemble reporting complexes also allows fluorophores to be removed and new circuit complexes to be used to label additional markers. Thus, these probes present opportunities to increase the total number of molecular targets that can be visualized on a biological sample by allowing multiple rounds of fluorescence microscopy to be performed.


Assuntos
Corantes Fluorescentes/metabolismo , Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Coloração e Rotulagem/métodos , Pareamento de Bases , Biomarcadores/análise , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Entropia , Feminino , Fluorescência , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia de Fluorescência , Sondas Moleculares/química , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Termodinâmica
19.
Phys Chem Chem Phys ; 12(35): 10398-405, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20582368

RESUMO

Transport of intracellular cargos by multiple microtubule motor proteins is believed to be a common and significant phenomenon in vivo, yet signatures of the microscopic dynamics of multiple motor systems are only now beginning to be resolved. Understanding these mechanisms largely depends on determining how grouping motors affect their association with microtubules and stepping rates, and hence, cargo run lengths and velocities. We examined this problem using a discrete state transition rate model of collective transport. This model accounts for the structural and mechanical properties in binding/unbinding and stepping transitions between distinct microtubule-bound configurations of a multiple motor system. In agreement with previous experiments that examine the dynamics of two coupled kinesin-1 motors, the energetic costs associated with deformations of mechanical linkages within a multiple motor assembly are found to reduce the system's overall microtubule affinity, producing attenuated mean cargo run lengths compared to cases where motors are assumed to function independently. With our present treatment, this attenuation largely stems from reductions in the microtubule binding rate and occurs even when mechanical coupling between motors is weak. Thus, our model suggests that, at least for a variety of kinesin-dependent transport processes, the net 'gains' obtained by grouping motors together may be smaller than previously expected.


Assuntos
Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Multimerização Proteica , Fenômenos Biomecânicos , Humanos , Cinesinas/química , Cinesinas/metabolismo , Cinética , Microtúbulos/metabolismo , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA