Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 622(7982): 308-314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794184

RESUMO

Systematic assessments of species extinction risk at regular intervals are necessary for informing conservation action1,2. Ongoing developments in taxonomy, threatening processes and research further underscore the need for reassessment3,4. Here we report the findings of the second Global Amphibian Assessment, evaluating 8,011 species for the International Union for Conservation of Nature Red List of Threatened Species. We find that amphibians are the most threatened vertebrate class (40.7% of species are globally threatened). The updated Red List Index shows that the status of amphibians is deteriorating globally, particularly for salamanders and in the Neotropics. Disease and habitat loss drove 91% of status deteriorations between 1980 and 2004. Ongoing and projected climate change effects are now of increasing concern, driving 39% of status deteriorations since 2004, followed by habitat loss (37%). Although signs of species recoveries incentivize immediate conservation action, scaled-up investment is urgently needed to reverse the current trends.


Assuntos
Anfíbios , Mudança Climática , Ecossistema , Espécies em Perigo de Extinção , Animais , Anfíbios/classificação , Biodiversidade , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Espécies em Perigo de Extinção/estatística & dados numéricos , Espécies em Perigo de Extinção/tendências , Extinção Biológica , Risco , Urodelos/classificação
3.
Ecol Lett ; 24(9): 1750-1761, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34196091

RESUMO

Convergence in communication appears rare compared with other forms of adaptation. This is puzzling, given communication is acutely dependent on the environment and expected to converge in form when animals communicate in similar habitats. We uncover deep-time convergence in territorial communication between two groups of tropical lizards separated by over 140 million years of evolution: the Southeast Asian Draco and Caribbean Anolis. These groups have repeatedly converged in multiple aspects of display along common environmental gradients. Robot playbacks to free-ranging lizards confirmed that the most prominent convergence in display is adaptive, as it improves signal detection. We then provide evidence from a sample of the literature to further show that convergent adaptation among highly divergent animal groups is almost certainly widespread in nature. Signal evolution is therefore curbed towards the same set of adaptive solutions, especially when animals are challenged with the problem of communicating effectively in noisy environments.


Assuntos
Lagartos , Adaptação Fisiológica , Adaptação Psicológica , Comunicação Animal , Animais , Evolução Biológica , Filogenia , Territorialidade
4.
Mol Phylogenet Evol ; 129: 349-353, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-28433248

RESUMO

In our recent publication (Sharma et al., 2017), we tested the hypothesis that eggs attached to the legs of male Podoctidae (Opiliones, Laniatores) constituted a case of paternal care, using molecular sequence data in tandem with multiple sequence alignments to test the prediction that sequences of the eggs and the adults that carried them would indicate conspecific identity. We discovered that the sequences of the eggs belonged to spiders, and thus rejected the paternal care hypothesis for these species. Machado and Wolff (2017) recently critiqued our work, which they regarded as a non-critical interpretation and over-reliance on molecular sequence data, and defended the traditional argument that the eggs attached to podoctids are in fact harvestman eggs. Here we show that additional molecular sequence data also refute the identity of the eggs as conspecific harvestman eggs, using molecular cloning techniques to rule out contamination. We show that individual gene trees consistently and reliably place the egg and adult sequences in disparate parts of the tree topology. Phylogenetic methods consistently place all egg sequences within the order Araneae (spiders). We submit that evidence for the paternal care hypothesis based on behavioral, morphological, and natural history approaches is either absent or insufficient for concluding that the eggs of podoctids are conspecific.


Assuntos
Aracnídeos , Filogenia , Animais , Masculino , Alinhamento de Sequência , Aranhas/genética
5.
Mol Phylogenet Evol ; 106: 164-173, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664345

RESUMO

The taxonomy and systematics of the armored harvestmen (suborder Laniatores) are based on various sets of morphological characters pertaining to shape, armature, pedipalpal setation, and the number of articles of the walking leg tarsi. Few studies have tested the validity of these historical character systems in a comprehensive way, with reference to an independent data class, i.e., molecular sequence data. We examined as a test case the systematics of Podoctidae, a family distributed throughout the Indo-Pacific. We tested the validity of the three subfamilies of Podoctidae using a five-locus phylogeny, and examined the evolution of dorsal shape as a proxy for taxonomic utility, using parametric shape analysis. Here we show that two of the three subfamilies, Ibaloniinae and Podoctinae, are non-monophyletic, with the third subfamily, Erecananinae, recovered as non-monophyletic in a subset of analyses. Various genera were also recovered as non-monophyletic. As first steps toward revision of Podoctidae, the subfamilies Erecananinae Roewer, 1912 and Ibaloniinae Roewer, 1912 are synonymized with Podoctinae Roewer, 1912 new synonymies, thereby abolishing unsubstantiated subfamilial divisions within Podoctidae. We once again synonymize the genus Paralomanius Goodnight & Goodnight, 1948 with Lomanius Roewer, 1923 revalidated. We additionally show that eggs carried on the legs of male Podoctidae are not conspecific to the males, falsifying the hypothesis of paternal care in this group.


Assuntos
Aracnídeos/classificação , Animais , Aracnídeos/anatomia & histologia , Aracnídeos/genética , Aracnídeos/crescimento & desenvolvimento , Teorema de Bayes , Citocromos c/classificação , Citocromos c/genética , Citocromos c/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Masculino , Óvulo/metabolismo , Filogenia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
6.
Mol Phylogenet Evol ; 94(Pt B): 531-536, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26477738

RESUMO

Recent higher-level frog phylogenetic analyses have included a few members of the endemic Philippine frog genus Sanguirana. Although the monophyly of the group has never been disputed, the recent phylogenetically-supported inclusion of the Palawan Wood Frog (Sanguirana sanguinea) in this clade was highly unexpected. In addition, species boundaries and relationships remain unclear and new species continue to be discovered. We estimate the phylogeny for this endemic Philippine genus using two mitochondrial gene regions and six nuclear loci and complete sampling for all known species. We use a time-calibrated Bayesian estimate of phylogeny and model-testing approach to biogeographic inference to infer ancestral areas and probable means of diversification. These analyses identify Sanguirana as an additional clade for which the 'Out-of-Palawan' biogeographic scenario is unambiguously preferred. This study lends additional support to recent work suggesting that a substantial portion of Philippine vertebrate megadiversity originated via colonization of the archipelago from the Palawan microcontinent, with subsequent invasion of oceanic islands (e.g., range expansion over Huxley's Modification of Wallace's Line), numerous instances of overwater dispersal, and geographic radiation across the archipelago.


Assuntos
Anuros/classificação , Animais , Anuros/genética , Teorema de Bayes , Genes Mitocondriais , Ilhas , Filipinas , Filogenia , Ranidae/genética , Análise de Sequência de DNA
7.
Mol Phylogenet Evol ; 72: 35-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389467

RESUMO

Widespread, co-distributed species with limited relative dispersal abilities represent compelling focal taxa for comparative phylogeography. Forest vertebrates in island archipelagos often exhibit pronounced population structure resulting from limited dispersal abilities or capacity to overcome marine barriers to dispersal. The exceptionally diverse Old World tree frogs of the family Rhacophoridae have colonized the forested island archipelagos of Southeast Asia on multiple occasions, entering the islands of Indonesia and the Philippines via a "stepping stone" mode of dispersal along elongate island chains, separated by a series of marine channels. Here we evaluate the prediction that two tightly co-distributed Philippine rhacophorids colonized the archipelago during concomitant timescales and in the same, linear, "island-hopping" progression. We use a new multilocus dataset, utilize dense genetic sampling from the eastern arc of the Philippines, and we take a model-based phylogeographic approach to examining the two species for similar topological patterns of diversification, genetic structure, and timescales of diversification. Our results support some common mechanistic predictions (a general south-to-north polarity of colonization) but not others (timescale for colonization and manner and degree of lineage diversification), suggesting differing biogeographic scenarios of geographical diffusion through the archipelago and unique and idiosyncratic ecological capacities and evolutionary histories of each species.


Assuntos
Anuros/genética , Animais , Ecossistema , Filipinas , Filogenia , Filogeografia , Análise de Sequência de DNA
8.
Glob Chang Biol ; 20(2): 495-503, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24132984

RESUMO

Extreme weather events, such as unusually hot or dry conditions, can cause death by exceeding physiological limits, and so cause loss of population. Survival will depend on whether or not susceptible organisms can find refuges that buffer extreme conditions. Microhabitats offer different microclimates to those found within the wider ecosystem, but do these microhabitats effectively buffer extreme climate events relative to the physiological requirements of the animals that frequent them? We collected temperature data from four common microhabitats (soil, tree holes, epiphytes, and vegetation) located from the ground to canopy in primary rainforests in the Philippines. Ambient temperatures were monitored from outside of each microhabitat and from the upper forest canopy, which represent our macrohabitat controls. We measured the critical thermal maxima (CTmax ) of frog and lizard species, which are thermally sensitive and inhabit our microhabitats. Microhabitats reduced mean temperature by 1-2 °C and reduced the duration of extreme temperature exposure by 14-31 times. Microhabitat temperatures were below the CTmax of inhabitant frogs and lizards, whereas macrohabitats consistently contained lethal temperatures. Microhabitat temperatures increased by 0.11-0.66 °C for every 1 °C increase in macrohabitat temperature, and this nonuniformity in temperature change influenced our forecasts of vulnerability for animal communities under climate change. Assuming uniform increases of 6 °C, microhabitats decreased the vulnerability of communities by up to 32-fold, whereas under nonuniform increases of 0.66 to 3.96 °C, microhabitats decreased the vulnerability of communities by up to 108-fold. Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events. These results suggest that predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume uniform changes in microclimates relative to macroclimates may be overly pessimistic. Nevertheless, even nonuniform temperature increases within buffered microhabitats would still threaten frogs and lizards.


Assuntos
Anuros/fisiologia , Temperatura Alta , Lagartos/fisiologia , Microclima , Animais , Mudança Climática , Ecossistema , Filipinas
9.
Proc Biol Sci ; 280(1770): 20131581, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24026817

RESUMO

Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed 'arboreality hypothesis' suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will 'flatten' the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This 'flattening' could potentially have serious impacts on forest functioning and species survival.


Assuntos
Anuros/fisiologia , Biodiversidade , Meio Ambiente , Animais , Clima , Geografia , Filipinas , Singapura , Clima Tropical
10.
Evolution ; 77(3): 660-669, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626820

RESUMO

We identified hypotheses for the cause and consequences of the loss of complexity in animal signals and tested these using a genus of visually communicating lizards, the Southeast Asian Draco lizards. Males of some species have lost the headbob component from their display, which is otherwise central to the communication of this genus. These males instead display a large, colorful dewlap to defend territories and attract mates. This dewlap initially evolved to augment the headbob component of the display, but has become the exclusive system of communication. We tested whether the loss of headbobs was caused by relaxed selection, habitat-dependent constraints, or size-specific energetic constraints on display movement. We then examined whether the consequences of this loss have been mitigated by increased signaling effort or complexity in the color of the dewlap. It appears the increased cost of display movement resulting from the evolution of large body size might have contributed to the loss of headbobs and has been somewhat compensated for by the evolution of greater complexity in dewlap color. However, this evolutionary shift is unlikely to have maintained the complexity previously present in the communication system, resulting in an apparent detrimental loss of information potential.


Assuntos
Ecossistema , Lagartos , Animais , Masculino , Comunicação Animal
11.
Mol Phylogenet Evol ; 59(1): 53-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21255665

RESUMO

The spectacular, virtually endemic radiation of Philippine semi-fossorial skinks of the genus Brachymeles represent one of the few radiations of scincid lizards to possess both fully limbed and limbless species. And yet, nothing is known of the phylogenetic relationships of this exceptional group. Morphologically similar body plans have made it difficult to assess species-level diversity, and the genus has long been recognized as one of the more modest radiations of southeast Asian lizards. However, recent large-scale survey efforts have resulted in the discovery of numerous new species, and taxonomic studies indicate that the diversity within the genus Brachymeles is grossly underestimated. In this study we provide the first robust estimate of phylogenetic relationships within the genus Brachymeles using a multi-locus dataset and nearly complete taxonomic sampling. We provide statistical tests of monophyly for all polytypic species and two widespread limb-reduced species and our results indicate wholesale deviations from past summaries and taxonomic evaluations of the genus. With few exceptions, we are able to reject the monophyly of all polytypic and widespread species, thereby validating the need for large-scale taxonomic revisions. Our results reveal that the limbless, monotypic, genus Davewakeum is nested within Brachymeles. Mapping of body form on our preferred phylogenetic tree suggests that limb-reduction and digit loss has occurred on multiple occasions in the history of the genus. A Bayesian reconstruction of ancestral areas indicates strong statistical support for a minimum of five major dispersal events that have given rise to a major component of the observed species diversity on separate Pleistocene aggregate island platforms of the archipelago.


Assuntos
Especiação Genética , Variação Genética , Lagartos/genética , Adenosina Trifosfatases/genética , Animais , Teorema de Bayes , Evolução Biológica , Fator Neurotrófico Derivado do Encéfalo/genética , Coleta de Dados/métodos , Genes Mitocondriais , Geografia , Lagartos/classificação , NADH Desidrogenase/genética , Filipinas , Filogenia , Filogeografia , Receptores de Prostaglandina E Subtipo EP4/genética , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Mol Phylogenet Evol ; 61(2): 333-50, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21757017

RESUMO

We investigated phylogeography of Philippine slender toads (genus Ansonia) and used a temporal framework for diversification, statistical tests of alternate topologies, and Bayesian approaches to test previous hypotheses concerning dispersal to, and colonization routes within, the southern Philippine island of Mindanao. Two species of Ansonia previously have been documented, with ranges separated by an east-west split corresponding to the approximate boundaries of Mindanao's paleoisland precursors. We present new mtDNA sequence data (1946 bp from genes encoding ND1, 16S rRNA and tRNALeu) for 105 Ansonia specimens sampled from 20 localities on Mindanao Island. Our data suggest that Philippine Ansonia is composed of at least eight, well-supported population lineages, structured into a minimum of four highly divergent mtDNA clades. One clade corresponds to Ansonia mcgregori, a range-restricted species apparently limited to the distal portion of the Zamboanga Peninsula of western Mindanao. Two morphologically indistinguishable, but genetically divergent, lineages possibly are undescribed cryptic species from western Mindanao. We recognize the five remaining lineages as Ansonia muelleri pending data from morphology or bioacoustics that might diagnose separate species among these lineages. Regardless of their species status, the five allopatric lineages of A. muelleri should be viewed as important genetic units for future genetic conservation planning.


Assuntos
Bufonidae/genética , Especiação Genética , Variação Genética , Filogeografia , Animais , Teorema de Bayes , Evolução Biológica , Bufonidae/classificação , DNA Mitocondrial/genética , Genética Populacional , Funções Verossimilhança , Filipinas , Filogenia , Análise de Sequência de DNA
13.
Mol Phylogenet Evol ; 56(2): 572-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20403445

RESUMO

In the megadiverse conservation hotspot of the Philippines, biodiversity is not uniformly distributed throughout the archipelago, but hierarchically partitioned into islands and island groups that were conjoined during the mid- to late-Pleistocene. Few species groups are widely distributed throughout the archipelago, but some exceptions exist, such as the common scincid lizards of the Sphenomorphus jagori complex (including S. jagori, S. coxi, and S. abdictus). Using mtDNA haplotype data we test biogeographic and taxonomic predictions in these abundant, large-bodied, forest floor lizards and arrive at conclusions that differ significantly from both past, and current, appraisals of species diversity. In contrast to expectations based on existing taxonomy (three species, each with two subspecies), we find evidence of at least eleven highly divergent species lineages diagnosed by haplotypic variation. Each lineage corresponds to a biogeographically circumscribed distribution (i.e., isolated islands or geological components of islands), suggesting lineage cohesion and allopatric differentiation. Parametric bootstrapping tests reject taxonomic and biogeographic hypotheses and suggest a complex pattern of unpredicted relationships. Only one of the former species (S. jagori) appears as a monophyletic entity (including four allopatric, highly divergent lineages that we suspect may represent evolutionary species), and the remaining species are paraphyletic, necessitating a comprehensive future taxonomic revision. The pattern of biogeographic provincialism and hidden cryptic species diversity detected here leads us to suspect that even the most common, presumably well-studied, and widespread species complexes in the Philippines are in need of thorough analysis with modern genetic and phylogenetic techniques. Such studies of speciation genetics in these common, widely distributed groups may lead to a better understanding of the genetic underpinnings of biodiversity, allow for an enhanced appreciation of the evolutionary history of this model island archipelago, and enable more informed conservation planning in a global biodiversity hotspot.


Assuntos
Evolução Molecular , Especiação Genética , Lagartos/genética , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Variação Genética , Geografia , Haplótipos , Lagartos/classificação , Modelos Genéticos , Filipinas , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
14.
Mol Phylogenet Evol ; 55(2): 699-710, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20132898

RESUMO

In the Philippines, Pleistocene sea level oscillations repeatedly connected and isolated neighboring islands. Hence, an understanding of the island platforms adjoined during periods of low sea level has led biologists to a suite of expectations that, taken together, represent a paradigm for the process of recent diversification in southeast Asia. We employ statistical tests of phylogenetic topology and population genetic analyses of widespread species of bent-toed geckos (Cyrtodactylus) to ascertain whether patterns of inter- and intra-specific diversity can be explained by a Pleistocene aggregate island model of diversification. Contrary to many classic studies of Philippine vertebrates, we find complex patterns that are only partially explained by past island connectivity. In particular, we determine that some populations inhabiting previously united island groups show substantial genetic divergence and are inferred to be polyphyletic. Additionally, greater genetic diversity is found within islands, than between them. Among the topological patterns inconsistent with the Pleistocene model, we note some similarities with other lineages, but no obviously shared causal mechanisms are apparent. Finally, we infer well-supported discordance between the gene trees inferred from mitochondrial and nuclear DNA sequences of two species, which we suspect is the result of incomplete lineage sorting. This study contributes to a nascent body of literature suggesting that the current paradigm for Philippine biogeography is an oversimplification requiring revision.


Assuntos
Evolução Molecular , Genética Populacional , Lagartos/genética , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Geografia , Funções Verossimilhança , Lagartos/classificação , Modelos Genéticos , Filipinas , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Mol Phylogenet Evol ; 54(2): 561-70, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19679193

RESUMO

We investigated the phylogenetic relationships and estimated the history of species diversification and biogeography in the bufonid genus Ansonia from Southeast Asia, a unique organism with tadpoles adapted to life in strong currents chiefly in montane regions and also in lowland rainforests. We estimated phylogenetic relationships among 32 named and unnamed taxa using 2461bp sequences of the mitochondrial 12S rRNA, tRNA(val), and 16S rRNA genes with equally-weighted parsimony, maximum likelihood, and Bayesian methods of inference. Monophyletic clades of Southeast Asian members of the genus Ansonia are well-supported, allowing for the interpretation of general biogeographic conclusions. The genus is divided into two major clades. One of these contains two reciprocally monophyletic subclades, one from the Malay Peninsula and Thailand and the other from Borneo. The other major clade primarily consists of Bornean taxa but also includes a monophyletic group of two Philippine species and a single peninsular Malaysian species. We estimated absolute divergence times using Bayesian methods with external calibration points to reconstruct the relative timing of faunal exchange between the major landmasses of Southeast Asia.


Assuntos
Bufonidae/genética , Evolução Molecular , Filogenia , Animais , Sudeste Asiático , Teorema de Bayes , Bufonidae/classificação , DNA Mitocondrial/genética , Geografia , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 57(2): 598-619, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20601009

RESUMO

Southeast Asia's widespread species offer unique opportunities to explore the effects of geographical barriers to dispersal on patterns of vertebrate lineage diversification. We analyzed mitochondrial gene sequences (16S rDNA) from a geographically widespread sample of 266 Southeast Asian tree frogs, including 244 individuals of Polypedates leucomystax and its close relatives. Our expectation was that lineages on island archipelagos would exhibit more substantial geographic structure, corresponding to the geological history of terrestrial connectivity in this region, compared to the Asian mainland. Contrary to predictions, we found evidence of numerous highly divergent lineages from a limited area on the Asian mainland, but fewer lineages with shallower divergences throughout oceanic islands of the Philippines and Indonesia. Surprisingly and in numerous instances, lineages in the archipelagos span distinct biogeographical provinces. Phylogeographic analyses identified four major haplotype clades; summary statistics, mismatch distributions, and Bayesian coalescent inference of demography provide support for recent range expansion, population growth, and/or admixture in the Philippine and some Sulawesi populations. We speculate that the current range of P. leucomystax in Southeast Asia is much larger now than in the recent past. Conversion of forested areas to monoculture agriculture and transportation of agricultural products between islands may have facilitated unprecedented population and range expansion in P. leucomystax throughout thousands of islands in the Philippine and Indonesian archipelagos.


Assuntos
Anuros/classificação , Anuros/genética , Filogeografia , Animais , DNA Ribossômico/genética , Variação Genética/genética , Humanos , Indonésia , Filipinas
17.
Biol Lett ; 6(5): 654-8, 2010 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-20375042

RESUMO

As humans continue to explore the last uncharted regions of the planet, discoveries of previously unknown species of large vertebrates have become infrequent. Here, we report on the discovery of a spectacular new species of giant, secretive, frugivorous, forest monitor lizard (Genus: Varanus) from the forests of the northern Philippines. Using data from morphology and mitochondrial and nuclear DNA sequences, we demonstrate the taxonomic distinctiveness of this new 2 m long species and provide insight into its historical biogeography and systematic affinities. Our molecular phylogenetic analyses indicate that the new species is closely related to Varanus olivaceus (from southern Luzon and nearby islands), but it differs from this and other varanids with respect to characteristics of scalation, colour pattern, body size, anatomy of the reproductive organs and genetic divergence. The new species appears to be restricted to forests of the central and northern Sierra Madre mountain range; it is separated from the range of V. olivaceus by a more than 150 km stretch that includes at least three low-elevation river valley barriers to dispersal. This discovery identifies a seldom-perceived biogeographic boundary and emphasizes the need for continued biodiversity research in the megadiverse conservation hotspot of the Philippines. It is anticipated that the new species will serve as an important flagship species for conservation efforts aimed at preserving the remaining forests of northern Luzon.


Assuntos
Conservação dos Recursos Naturais , Lagartos , Animais , Geografia , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia
18.
Biol Lett ; 6(3): 336-8, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20007165

RESUMO

With an understudied amphibian fauna, the highest deforestation rate on the planet and high harvesting pressures, Southeast Asian amphibians are facing a conservation crisis. Owing to the overriding threat of habitat loss, the most critical conservation action required is the identification and strict protection of habitat assessed as having high amphibian species diversity and/or representing distinctive regional amphibian faunas. Long-term population monitoring, enhanced survey efforts, collection of basic biological and ecological information, continued taxonomic research and evaluation of the impact of commercial trade for food, medicine and pets are also needed. Strong involvement of regional stakeholders, students and professionals is essential to accomplish these actions.


Assuntos
Anfíbios , Conservação dos Recursos Naturais/métodos , Animais , Sudeste Asiático , Biodiversidade , Ecossistema , Espécies em Perigo de Extinção , Vigilância da População
19.
Zootaxa ; 4830(3): zootaxa.4830.3.6, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056147

RESUMO

We describe a new species of frog of the genus Platymantis Günther (subgenus Tirahanulap), from the east-central regions of the Philippines. It belongs to the the previously-defined P. hazelae Group) based on morphological and bioacoustic datasets. The new species is phenotypically and ecologically most similar to members of Tirahanulap, an assemblage of small-bodied arboreal frogs inhabiting montane forests of the central and northern islands of the Philippine archipelago. The new species represents the first taxon in the Cloud Frog species known from the biogeographically unique Mindanao Pleistocene Aggregate Island Complex. Particularly susceptible to local extirpation following deforestation, all known species of Tirahanulap are important indicator species for environmental and conservation assessments, making this new species not only an exceptional addition to Philippine biodiversity but also an important symbol for conservation initiatives in the region.


Assuntos
Anuros , Florestas , Animais , Biodiversidade , Ilhas , Filipinas
20.
Sci Rep ; 10(1): 7972, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409706

RESUMO

Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species' potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hylarana erythraea, Rhinella marina, Hoplobatrachus rugulosus, and Kaloula pulchra) in their native and Philippine-invaded ranges to investigate niche changes that have unfolded during their invasion and, with this, assessed the extent of niche conservatism and environmental equilibrium. We investigated how niche changes affected reciprocal transferability of ecological niche models (ENMs) calibrated using data from the species' native and Philippine-invaded ranges, and both ranges combined. We found varying levels of niche change across the species' realized climatic niches in the Philippines: climatic niche shift for H. rugulosus; niche conservatism for R. marina and K. pulchra; environmental non-equilibrium in the Philippine-invaded range for all species; and environmental non-equilibrium in the native range or adaptive changes post-introduction for all species except H. erythraea. Niche changes undermined the reciprocal transferability of ENMs calibrated using native and Philippine-invaded range data. Our paper highlights the difficulty of predicting potential distributions given niche shifts and environmental non-equilibrium; we suggest calibrating ENMs with data from species' combined native and invaded ranges, and to regularly reassess niche changes and recalibrate ENMs as species' invasions progress.


Assuntos
Ecossistema , Espécies Introduzidas , Modelos Teóricos , Clima , Conservação dos Recursos Naturais , Geografia , Filipinas , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA