RESUMO
Four types of synthetic sorbents were developed for high-temperature post-combustion calcium looping CO2 capture using Longcal limestone. Pellets were prepared with: lime and cement (LC); lime and flour (LF); lime, cement and flour (LCF); and lime, cement and flour doped with seawater (LCFSW). Flour was used as a templating material. All samples underwent 20 cycles in a TGA under two different calcination conditions. Moreover, the prepared sorbents were tested for 10 carbonation/calcination cycles in a 68 mm-internal-diameter bubbling fluidized bed (BFB) in three environments: with no sulphur and no steam; in the presence of sulphur; and with steam. When compared to limestone, all the synthetic sorbents exhibited enhanced CO2 capture performance in the BFB experiments, with the exception of the sample doped with seawater. In the BFB tests, the addition of cement binder during the pelletisation process resulted in the increase of CO2 capture capacity from 0.08 g CO2 per g sorbent (LF) to 0.15 g CO2 per g sorbent (LCF) by the 10th cycle. The CO2 uptake in the presence of SO2 dramatically declined by the 10th cycle; for example, from 0.22 g CO2 per g sorbent to 0.05 g CO2 per g sorbent in the case of the untemplated material (LC). However, as expected all samples showed improved performance in the presence of steam, and the decay of reactivity during the cycles was less pronounced. Nevertheless, in the BFB environment, the templated pellets showed poorer CO2 capture performance. This is presumably because of material loss due to attrition under the FB conditions. By contrast, the templated materials performed better than untemplated materials under TGA conditions. This indicates that the reduction of attrition is critical when employing templated materials in realistic systems with FB reactors.
RESUMO
The calcium looping (CaL) spent sorbent (i) can be a suitable limestone replacement in the production of both ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement, and (ii) promotes environmental benefits in terms of reduced CO2 emission, increased energy saving and larger utilization of industrial byproducts. A sample of CaL spent sorbent, purged from a 200 kWth pilot facility, was tested as a raw material for the synthesis of two series of OPC and CSA clinkers, obtained from mixes heated in a laboratory electric oven within temperature ranges 1350°-1500 °C and 1200°-1350 °C, respectively. As OPC clinker-generating mixtures, six clay-containing binary blends were investigated, three with limestone (reference mixes) and three with the CaL spent sorbent. All of them showed similar burnability indexes. Moreover, three CSA clinker-generating blends (termed RM, MA and MB) were explored. They included, in the order: (I) limestone, bauxite and gypsum (reference mix); (II) CaL spent sorbent, bauxite and gypsum; (III) CaL spent sorbent plus anodization mud and a mixture of fluidized bed combustion (FBC) fly and bottom ashes. The maximum conversion toward 4CaO·3Al2O3·SO3, the chief CSA clinker component, was the largest for MB and almost the same for RM and MA.
Assuntos
Compostos de Alumínio/química , Carbonato de Cálcio/química , Compostos de Cálcio/química , Cálcio/química , Materiais de Construção , Compostos de Enxofre/química , Análise Diferencial Térmica , Espectrometria por Raios X , Termogravimetria , Difração de Raios XRESUMO
A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass.