Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(9): 2936-2951, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38874319

RESUMO

The demand for Lentiviral Vector (LV) drug substance is increasing. However, primary capture using convective anion-exchange chromatography remains a significant manufacturing challenge. This stems from a poor understanding of the complex adsorption behaviors linked to LVs intricate and variable structure, such as high binding heterogeneity which is typically characterized by a gradient elution profile consisting of two peaks. Understanding which LV structural components drive these phenomena is therefore crucial for rational process design. This work identifies the key LV envelope components responsible for binding to quaternary-amine membrane adsorbents. Eliminating the pseudotype protein (Vesicular Stomatitis Virus G glycoprotein [VSV-G]) did not impact the heterogenous two-peak elution profile, suggesting it is not a major binding species. Digestion of envelope glycosaminoglycans (GAGs), present on proteoglycans, leads to a dramatic reduction in the proportion of vector eluted in peak 2, decreasing from 50% to 3.1%, and a threefold increase in peak 1 maximum. Data from reinjection experiments point towards interparticle envelope heterogeneity from discrete LV populations, where the two-peak profile emerges from a subpopulation of LVs interacting via highly charged GAGs (peak 2) along with a weaker binding population likely interacting through the phospholipid membrane and envelope protein (peak 1).


Assuntos
Vetores Genéticos , Lentivirus , Cromatografia por Troca Iônica/métodos , Lentivirus/genética , Vetores Genéticos/genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
2.
J Chem Inf Model ; 64(7): 2681-2694, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38386417

RESUMO

Despite recent advances in computational protein science, the dynamic behavior of proteins, which directly governs their biological activity, cannot be gleaned from sequence information alone. To overcome this challenge, we propose a framework that integrates the peptide sequence, protein structure, and protein dynamics descriptors into machine learning algorithms to enhance their predictive capabilities and achieve improved prediction of the protein variant function. The resulting machine learning pipeline integrates traditional sequence and structure information with molecular dynamics simulation data to predict the effects of multiple point mutations on the fold improvement of the activity of bovine enterokinase variants. This study highlights how the combination of structural and dynamic data can provide predictive insights into protein functionality and address protein engineering challenges in industrial contexts.


Assuntos
Enteropeptidase , Proteínas , Animais , Bovinos , Enteropeptidase/metabolismo , Proteínas/química , Algoritmos , Aprendizado de Máquina , Sequência de Aminoácidos
3.
Biotechnol Bioeng ; 120(8): 2269-2282, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386920

RESUMO

Use of lentiviral vectors (LVs) in clinical Cell and Gene Therapy applications is growing. However, functional product loss during capture chromatography, typically anion-exchange (AIEX), remains a significant unresolved challenge for the design of economic processes. Despite AIEX's extensive use, variable performance and generally low recovery is reported. This poor understanding of product loss mechanisms highlights a significant gap in our knowledge of LV adsorption and other types of vector delivery systems. This work demonstrates HIV-1-LV recovery over quaternary-amine membrane adsorbents is a function of time in the adsorbed state. Kinetic data for product loss in the column bound state was generated. Fitting a second order-like rate model, we observed a rapid drop in functional recovery due to increased irreversible binding for vectors encoding two separate transgenes ( t Y 1 / 2 ${t}_{{Y}_{1/2}}$ = 12.7 and 18.7 min). Upon gradient elution, a two-peak elution profile implicating the presence of two distinct binding subpopulations is observed. Characterizing the loss kinetics of these two subpopulations showed a higher rate of vector loss in the weaker binding peak. This work highlights time spent in the adsorbed state as a critical factor impacting LV product loss and the need for consideration in LV AIEX process development workflows.


Assuntos
HIV-1 , Lentivirus , Lentivirus/genética , Cromatografia por Troca Iônica/métodos , Vetores Genéticos , HIV-1/genética , Transgenes , Transdução Genética
4.
Microb Cell Fact ; 20(1): 208, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717620

RESUMO

Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and 'omics' based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/biossíntese , Solubilidade , Biotecnologia/métodos , Escherichia coli/enzimologia , Microbiologia Industrial , Projetos de Pesquisa
5.
FEMS Yeast Res ; 19(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753445

RESUMO

Topological analysis of large networks, which focus on a specific biological process or on related biological processes, where functional coherence exists among the interacting members, may provide a wealth of insight into cellular functionality. This work presents an unbiased systems approach to analyze genetic, transcriptional regulatory and physical interaction networks of yeast genes possessing such functional coherence to gain novel biological insight. The present analysis identified only a few transcriptional regulators amongst a large gene cohort associated with the protein metabolism and processing in yeast. These transcription factors are not functionally required for the maintenance of these tasks in growing cells. Rather, they are involved in rewiring gene transcription in response to such major challenges as starvation, hypoxia, DNA damage, heat shock or the accumulation of unfolded proteins. Indeed, only a subset of these proteins were captured empirically in the nuclear-enriched fraction of non-stressed yeast cells, suggesting that the transcriptional regulation of protein metabolism and processing in yeast is primarily concerned with maintaining cellular robustness in the face of threat by either internal or external stressors.


Assuntos
Regulação Fúngica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Redes Reguladoras de Genes
6.
Biotechnol Bioeng ; 116(3): 610-621, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578666

RESUMO

Metabolic networks adapt to changes in their environment by modulating the activity of their enzymes and transporters; often by changing their abundance. Understanding such quantitative changes can shed light onto how metabolic adaptation works, or how it can fail and lead to a metabolically dysfunctional state. We propose a strategy to quantify metabolic protein requirements for cofactor-utilising enzymes and transporters through constraint-based modelling. The first eukaryotic genome-scale metabolic model to comprehensively represent iron metabolism was constructed, extending the most recent community model of the Saccharomyces cerevisiae metabolic network. Partial functional impairment of the genes involved in the maturation of iron-sulphur (Fe-S) proteins was investigated employing the model and the in silico analysis revealed extensive rewiring of the fluxes in response to this functional impairment, despite its marginal phenotypic effect. The optimal turnover rate of enzymes bearing ion cofactors can be determined via this novel approach; yeast metabolism, at steady state, was determined to employ a constant turnover of its iron-recruiting enzyme at a rate of 3.02 × 10 -11 mmol·(g biomass) -1 ·h -1 .


Assuntos
Coenzimas/metabolismo , Ferro/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae , Enxofre/metabolismo , Coenzimas/genética , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Biotechnol Bioeng ; 116(6): 1315-1325, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30712286

RESUMO

Without a scale-down model for perfusion, high resource demand makes cell line screening or process development challenging, therefore, potentially successful cell lines or perfusion processes are unrealized and their ability untapped. We present here the refunctioning of a high-capacity microscale system that is typically used in fed-batch process development to allow perfusion operation utilizing in situ gravity settling and automated sampling. In this low resource setting, which involved routine perturbations in mixing, pH and dissolved oxygen concentrations, the specific productivity and the maximum cell concentration were higher than 3.0 × 106 mg/cell/day and 7 × 10 7 cells/ml, respectively, across replicate microscale perfusion runs conducted at one vessel volume exchange per day. A comparative analysis was conducted at bench scale with vessels operated in perfusion mode utilizing a cell retention device. Neither specific productivity nor product quality indicated by product aggregation (6%) was significantly different across scales 19 days after inoculation, thus demonstrating this setup to be a suitable and reliable platform for evaluating the performance of cell lines and the effect of process parameters, relevant to perfusion mode of culturing.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Oxigênio/análise , Oxigênio/metabolismo
8.
Bioprocess Biosyst Eng ; 42(9): 1399-1408, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31119388

RESUMO

There is a growing interest in mining and handling of big data, which has been rapidly accumulating in the repositories of bioprocess industries. Biopharmaceutical industries are no exception; the implementation of advanced process control strategies based on multivariate monitoring techniques in biopharmaceutical production gave rise to the generation of large amounts of data. Real-time measurements of critical quality and performance attributes collected during production can be highly useful to understand and model biopharmaceutical processes. Data mining can facilitate the extraction of meaningful relationships pertaining to these bioprocesses, and predict the performance of future cultures. This review evaluates the suitability of various metaheuristic methods available for data pre-processing, which would involve the handling of missing data, the visualisation of the data, and dimension reduction; and for data processing, which would focus on modelling of the data and the optimisation of these models in the context of biopharmaceutical process development. The advantages and the associated challenges of employing different methodologies in pre-processing and processing of the data are discussed. In light of these evaluations, a summary guideline is proposed for handling and analysis of the data generated in biopharmaceutical process development.


Assuntos
Produtos Biológicos , Indústria Farmacêutica , Heurística , Modelos Teóricos , Desenvolvimento de Medicamentos , Indústria Farmacêutica/métodos , Indústria Farmacêutica/organização & administração , Indústria Farmacêutica/normas , Humanos
9.
Bioprocess Biosyst Eng ; 42(4): 657-663, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30617419

RESUMO

The biologics sector has amassed a wealth of data in the past three decades, in line with the bioprocess development and manufacturing guidelines, and analysis of these data with precision is expected to reveal behavioural patterns in cell populations that can be used for making predictions on how future culture processes might behave. The historical bioprocessing data likely comprise experiments conducted using different cell lines, to produce different products and may be years apart; the situation causing inter-batch variability and missing data points to human- and instrument-associated technical oversights. These unavoidable complications necessitate the introduction of a pre-processing step prior to data mining. This study investigated the efficiency of mean imputation and multivariate regression for filling in the missing information in historical bio-manufacturing datasets, and evaluated their performance by symbolic regression models and Bayesian non-parametric models in subsequent data processing. Mean substitution was shown to be a simple and efficient imputation method for relatively smooth, non-dynamical datasets, and regression imputation was effective whilst maintaining the existing standard deviation and shape of the distribution in dynamical datasets with less than 30% missing data. The nature of the missing information, whether Missing Completely At Random, Missing At Random or Missing Not At Random, emerged as the key feature for selecting the imputation method.


Assuntos
Produtos Biológicos , Bases de Dados Factuais , Processamento Eletrônico de Dados , Heurística , Modelos Teóricos
10.
Int J Mol Sci ; 20(21)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684012

RESUMO

Chinese hamster ovary (CHO) cells are used for the production of the majority of biopharmaceutical drugs, and thus have remained the standard industry host for the past three decades. The amino acid composition of the medium plays a key role in commercial scale biologics manufacturing, as amino acids constitute the building blocks of both endogenous and heterologous proteins, are involved in metabolic and non-metabolic pathways, and can act as main sources of nitrogen and carbon under certain conditions. As biomanufactured proteins become increasingly complex, the adoption of model-based approaches become ever more popular in complementing the challenging task of medium development. The extensively studied amino acid metabolism is exceptionally suitable for such model-driven analyses, and although still limited in practice, the development of these strategies is gaining attention, particularly in this domain. This paper provides a review of recent efforts. We first provide an overview of the widely adopted practice, and move on to describe the model-driven approaches employed for the improvement and optimization of the external amino acid supply in light of cellular amino acid demand. We conclude by proposing the likely prevalent direction the field is heading towards, providing a critical evaluation of the current state and the future challenges and considerations.


Assuntos
Aminoácidos/química , Materiais Biocompatíveis/química , Desenho Assistido por Computador , Meios de Cultura/química , Aminoácidos/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Células CHO , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Meios de Cultura/farmacologia
11.
Cell Commun Signal ; 16(1): 85, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458881

RESUMO

BACKGROUND: Rapamycin is a potent inhibitor of the highly conserved TOR kinase, the nutrient-sensitive controller of growth and aging. It has been utilised as a chemotherapeutic agent due to its anti-proliferative properties and as an immunosuppressive drug, and is also known to extend lifespan in a range of eukaryotes from yeast to mammals. However, the mechanisms through which eukaryotic cells adapt to sustained exposure to rapamycin have not yet been thoroughly investigated. METHODS: Here, S. cerevisiae response to long-term rapamycin exposure was investigated by identifying the physiological, transcriptomic and metabolic differences observed for yeast populations inoculated into low-dose rapamycin-containing environment. The effect of oxygen availability and acidity of extracellular environment on this response was further deliberated by controlling or monitoring the dissolved oxygen level and pH of the culture. RESULTS: Yeast populations grown in the presence of rapamycin reached higher cell densities complemented by an increase in their chronological lifespan, and these physiological adaptations were associated with a rewiring of the amino acid metabolism, particularly that of arginine. The ability to synthesise amino acids emerges as the key factor leading to the major mechanistic differences between mammalian and microbial TOR signalling pathways in relation to nutrient recognition. CONCLUSION: Oxygen levels and extracellular acidity of the culture were observed to conjointly affect yeast populations, virtually acting as coupled physiological effectors; cells were best adapted when maximal oxygenation of the culture was maintained in slightly acidic pH, any deviation necessitated more extensive readjustment to additional stress factors.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Aminoácidos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Relação Dose-Resposta a Droga , Oxigênio/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
12.
Microbiology (Reading) ; 163(6): 829-839, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28635591

RESUMO

Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).


Assuntos
Biologia Computacional/métodos , Muramidase/biossíntese , Pichia/genética , Algoritmos , Evolução Biológica , Biotecnologia , Biologia Computacional/instrumentação , Humanos , Internet , Muramidase/genética , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Software
14.
Bioinformatics ; 32(3): 388-97, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26411869

RESUMO

MOTIVATION: Simple bioinformatic tools are frequently used to analyse time-series datasets regardless of their ability to deal with transient phenomena, limiting the meaningful information that may be extracted from them. This situation requires the development and exploitation of tailor-made, easy-to-use and flexible tools designed specifically for the analysis of time-series datasets. RESULTS: We present a novel statistical application called CLUSTERnGO, which uses a model-based clustering algorithm that fulfils this need. This algorithm involves two components of operation. Component 1 constructs a Bayesian non-parametric model (Infinite Mixture of Piecewise Linear Sequences) and Component 2, which applies a novel clustering methodology (Two-Stage Clustering). The software can also assign biological meaning to the identified clusters using an appropriate ontology. It applies multiple hypothesis testing to report the significance of these enrichments. The algorithm has a four-phase pipeline. The application can be executed using either command-line tools or a user-friendly Graphical User Interface. The latter has been developed to address the needs of both specialist and non-specialist users. We use three diverse test cases to demonstrate the flexibility of the proposed strategy. In all cases, CLUSTERnGO not only outperformed existing algorithms in assigning unique GO term enrichments to the identified clusters, but also revealed novel insights regarding the biological systems examined, which were not uncovered in the original publications. AVAILABILITY AND IMPLEMENTATION: The C++ and QT source codes, the GUI applications for Windows, OS X and Linux operating systems and user manual are freely available for download under the GNU GPL v3 license at http://www.cmpe.boun.edu.tr/content/CnG. CONTACT: sgo24@cam.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Teorema de Bayes , Análise por Conglomerados , Modelos Estatísticos , Software
15.
Biotechnol Bioeng ; 114(11): 2605-2615, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28691262

RESUMO

Genome-scale metabolic models are valuable tools for the design of novel strains of industrial microorganisms, such as Komagataella phaffii (syn. Pichia pastoris). However, as is the case for many industrial microbes, there is no executable metabolic model for K. phaffiii that confirms to current standards by providing the metabolite and reactions IDs, to facilitate model extension and reuse, and gene-reaction associations to enable identification of targets for genetic manipulation. In order to remedy this deficiency, we decided to reconstruct the genome-scale metabolic model of K. phaffii by reconciling the extant models and performing extensive manual curation in order to construct an executable model (Kp.1.0) that conforms to current standards. We then used this model to study the effect of biomass composition on the predictive success of the model. Twelve different biomass compositions obtained from published empirical data obtained under a range of growth conditions were employed in this investigation. We found that the success of Kp1.0 in predicting both gene essentiality and growth characteristics was relatively unaffected by biomass composition. However, we found that biomass composition had a profound effect on the distribution of the fluxes involved in lipid, DNA, and steroid biosynthetic processes, cellular alcohol metabolic process, and oxidation-reduction process. Furthermore, we investigated the effect of biomass composition on the identification of suitable target genes for strain development. The analyses revealed that around 40% of the predictions of the effect of gene overexpression or deletion changed depending on the representation of biomass composition in the model. Considering the robustness of the in silico flux distributions to the changing biomass representations enables better interpretation of experimental results, reduces the risk of wrong target identification, and so both speeds and improves the process of directed strain development.


Assuntos
Ascomicetos/fisiologia , Proliferação de Células/fisiologia , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico/métodos , Metaboloma/fisiologia , Modelos Biológicos , Ascomicetos/citologia , Simulação por Computador
16.
Stem Cells ; 33(9): 2712-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26059426

RESUMO

During mammalian preimplantation development, the cells of the blastocyst's inner cell mass differentiate into the epiblast and primitive endoderm lineages, which give rise to the fetus and extra-embryonic tissues, respectively. Extra-embryonic endoderm (XEN) differentiation can be modeled in vitro by induced expression of GATA transcription factors in mouse embryonic stem cells. Here, we use this GATA-inducible system to quantitatively monitor the dynamics of global proteomic changes during the early stages of this differentiation event and also investigate the fully differentiated phenotype, as represented by embryo-derived XEN cells. Using mass spectrometry-based quantitative proteomic profiling with multivariate data analysis tools, we reproducibly quantified 2,336 proteins across three biological replicates and have identified clusters of proteins characterized by distinct, dynamic temporal abundance profiles. We first used this approach to highlight novel marker candidates of the pluripotent state and XEN differentiation. Through functional annotation enrichment analysis, we have shown that the downregulation of chromatin-modifying enzymes, the reorganization of membrane trafficking machinery, and the breakdown of cell-cell adhesion are successive steps of the extra-embryonic differentiation process. Thus, applying a range of sophisticated clustering approaches to a time-resolved proteomic dataset has allowed the elucidation of complex biological processes which characterize stem cell differentiation and could establish a general paradigm for the investigation of these processes.


Assuntos
Diferenciação Celular/fisiologia , Endoderma/fisiologia , Membranas Extraembrionárias/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Proteômica/métodos , Animais , Células Cultivadas , Endoderma/citologia , Membranas Extraembrionárias/citologia , Camundongos
17.
Biotechnol Prog ; : e3476, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687144

RESUMO

High throughput process development (HTPD) is established for time- and resource- efficient chromatographic process development. However, integration with non-chromatographic operations within a monoclonal antibody (mAb) purification train is less developed. An area of importance is the development of low pH viral inactivation (VI) that follows protein A chromatography. However, the lack of pH measurement devices at the micro-scale represents a barrier to implementation, which prevents integration with the surrounding unit operations, limiting overall process knowledge. This study is based upon the design and testing of a HTPD platform for integration of the protein A and low pH VI operations. This was achieved by using a design and simulation software before execution on an automated liquid handler. The operations were successfully translated to the micro-scale, as assessed by analysis of recoveries and molecular weight content. The integrated platform was then used as a tool to assess the effect of pH on HMWC during low pH hold. The laboratory-scale and micro-scale elution pools showed comparable HMWC across the pH range 3.2-3.7. The investigative power of the platform is highlighted by evaluating the resources required to conduct a hypothetical experiment. This results in lower resource demands and increased labor efficiency relative to the laboratory-scale. For example, the experiment can be conducted in 7 h, compared to 105 h, translating to labor hours, 3 h and 28 h for the micro-scale and laboratory-scale, respectively. This presents the opportunity for further integration beyond chromatographic operations within the purification sequence, to establish a fit-to-platform assessment tool for mAb process development.

18.
J Biotechnol ; 387: 32-43, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38555021

RESUMO

The feasibility of bioprocess development relies heavily on the successful application of primary recovery and purification techniques. Aqueous two-phase extraction (ATPE) disrupts the definition of "unit operation" by serving as an integrative and intensive technique that combines different objectives such as the removal of biomass and integrated recovery and purification of the product of interest. The relative simplicity of processing large samples renders this technique an attractive alternative for industrial bioprocessing applications. However, process development is hindered by the lack of easily predictable partition behaviours, the elucidation of which necessitates a large number of experiments to be conducted. Liquid handling devices can assist to address this problem; however, they are configured to operate using low viscosity fluids such as water and water-based solutions as opposed to highly viscous polymeric solutions, which are typically required in ATPE. In this work, an automated high throughput ATPE process development framework is presented by constructing phase diagrams and identifying the binodal curves for PEG6000, PEG3000, and PEG2000. Models were built to determine viscosity- and volume-independent transfer parameters. The framework provided an appropriate strategy to develop a very precise and accurate operation by exploiting the relationship between different liquid transfer parameters and process error. Process accuracy, measured by mean absolute error, and device precision, evaluated by the coefficient of variation, were both shown to be affected by the mechanical properties, particularly viscosity, of the fluids employed. For PEG6000, the mean absolute error improved by six-fold (from 4.82% to 0.75%) and the coefficient of variation improved by three-fold (from 0.027 to 0.008) upon optimisation of the liquid transfer parameters accounting for the viscosity effect on the PEG-salt buffer utilising ATPE operations. As demonstrated here, automated liquid handling devices can serve to streamline process development for APTE enabling wide adoption of this technique in large scale bioprocess applications.


Assuntos
Polietilenoglicóis , Viscosidade , Polietilenoglicóis/química , Água/química , Automação , Extração Líquido-Líquido/métodos
19.
Sci Rep ; 13(1): 834, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646795

RESUMO

Process analytical technology (PAT) has demonstrated huge potential to enable the development of improved biopharmaceutical manufacturing processes by ensuring the reliable provision of quality products. However, the complexities associated with the manufacture of advanced therapy medicinal products have resulted in a slow adoption of PAT tools into industrial bioprocessing operations, particularly in the manufacture of cell and gene therapy products. Here we describe the applicability of a novel refractometry-based PAT system (Ranger system), which was used to monitor the metabolic activity of HEK293T cell cultures during lentiviral vector (LVV) production processes in real time. The PAT system was able to rapidly identify a relationship between bioreactor pH and culture metabolic activity and this was used to devise a pH operating strategy that resulted in a 1.8-fold increase in metabolic activity compared to an unoptimised bioprocess in a minimal number of bioreactor experiments; this was achieved using both pre-programmed and autonomous pH control strategies. The increased metabolic activity of the cultures, achieved via the implementation of the PAT technology, was not associated with increased LVV production. We employed a metabolic modelling strategy to elucidate the relationship between these bioprocess level events and HEK293T cell metabolism. The modelling showed that culturing of HEK293T cells in a low pH (pH 6.40) environment directly impacted the intracellular maintenance of pH and the intracellular availability of oxygen. We provide evidence that the elevated metabolic activity was a response to cope with the stress associated with low pH to maintain the favourable intracellular conditions, rather than being indicative of a superior active state of the HEK293T cell culture resulting in enhanced LVV production. Forecasting strategies were used to construct data models which identified that the novel PAT system not only had a direct relationship with process pH but also with oxygen availability; the interaction and interdependencies between these two parameters had a direct effect on the responses observed at the bioprocess level. We present data which indicate that process control and intervention using this novel refractometry-based PAT system has the potential to facilitate the fine tuning and rapid optimisation of the production environment and enable adaptive process control for enhanced process performance and robustness.


Assuntos
Reatores Biológicos , Proteínas , Humanos , Células HEK293 , Técnicas de Cultura de Células , Aprendizado de Máquina
20.
Methods Mol Biol ; 2049: 315-327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602619

RESUMO

The dynamics of eukaryotic systems provide us with a signature of their response to stress, perturbations, or sustained, cyclic, or periodic variations and fluctuations. Studying the dynamic behavior of such systems is therefore elemental in achieving a mechanistic understanding of cellular behavior. This conceptual chapter discusses some of the key aspects that need to be considered in the study of dynamic responses of eukaryotic systems, in particular of eukaryotic networks. However, it does not aim to provide an exhaustive evaluation of the existing methodologies. The discussions in the chapter primarily relate to the cellular networks of eukaryotes and essentially leave higher dynamic community structures such as social networks, epidemic spreading, or ecological networks out of the scope of this argument.


Assuntos
Eucariotos/metabolismo , Algoritmos , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA