Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(12): 3636-40, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775530

RESUMO

Methane emissions in the Arctic are important, and may be contributing to global warming. While methane emission rates from Arctic lakes are well documented, methods are needed to quantify the relative contribution of active layer groundwater to the overall lake methane budget. Here we report measurements of natural tracers of soil/groundwater, radon, and radium, along with methane concentration in Toolik Lake, Alaska, to evaluate the role active layer water plays as an exogenous source for lake methane. Average concentrations of methane, radium, and radon were all elevated in the active layer compared with lake water (1.6 × 10(4) nM, 61.6 dpm⋅m(-3), and 4.5 × 10(5) dpm⋅m(-3) compared with 1.3 × 10(2) nM, 5.7 dpm⋅m(-3), and 4.4 × 10(3) dpm⋅m(-3), respectively). Methane transport from the active layer to Toolik Lake based on the geochemical tracer radon (up to 2.9 g⋅m(-2)⋅y(-1)) can account for a large fraction of methane emissions from this lake. Strong but spatially and temporally variable correlations between radon activity and methane concentrations (r(2) > 0.69) in lake water suggest that the parameters that control methane discharge from the active layer also vary. Warming in the Arctic may expand the active layer and increase the discharge, thereby increasing the methane flux to lakes and from lakes to the atmosphere, exacerbating global warming. More work is needed to quantify and elucidate the processes that control methane fluxes from the active layer to predict how this flux might change in the future and to evaluate the regional and global contribution of active layer water associated methane inputs.

2.
Environ Sci Technol ; 49(20): 12036-43, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26372173

RESUMO

To better understand groundwater-surface water dynamics in high latitude areas, we conducted a field study at three sites in Alaska with varying permafrost coverage. The natural groundwater tracer ((222)Rn, radon) was used to evaluate groundwater discharge, and electrical resistivity tomography (ERT) was used to examine subsurface mixing dynamics. Different controls govern groundwater discharge at these sites. In areas with sporadic permafrost (Kasitsna Bay), the major driver of submarine groundwater discharge is tidal pumping, due to the large tidal oscillations, whereas at Point Barrow, a site with continuous permafrost and small tidal amplitudes, fluxes are mostly affected by seasonal permafrost thawing. Extended areas of low resistivity in the subsurface alongshore combined with high radon in surface water suggests that groundwater-surface water interactions might enhance heat transport into deeper permafrost layers promoting permafrost thawing, thereby enhancing groundwater discharge.


Assuntos
Água Subterrânea , Hidrologia/métodos , Alaska , Baías , Água Subterrânea/análise , Água Subterrânea/química , Pergelissolo , Radônio/análise , Movimentos da Água
3.
J Contam Hydrol ; 251: 104068, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108569

RESUMO

Shallow (<30 m) reducing groundwater commonly contains abundant dissolved arsenic (As) in Bangladesh. We hypothesize that dissolved As in iron (Fe)-rich groundwater discharging to rivers is trapped onto Fe(III)-oxyhydroxides which precipitate in shallow riverbank sediments under the influence of tidal fluctuations. Therefore, the goal of this study is to compare the calculated mass of sediment-bound As that would be sequestered from dissolved groundwater As that discharges through riverbanks of the Meghna River to the observed mass of As trapped within riverbank sediments. To calculate groundwater discharge, a Boussinesq aquifer analytical groundwater flow model was developed and constrained by cyclical seasonal fluctuations in hydraulic heads and river stages observed at three sites along a 13 km reach in central Bangladesh. At all sites, groundwater discharges to the river year-round but most of it passes through an intertidal zone created by ocean tides propagating upstream from the Bay of Bengal in the dry season. The annualized groundwater discharge per unit width at the three sites ranges from 173 to 891 m2/yr (average 540 m2/yr). Assuming that riverbanks have been stable since the Brahmaputra River avulsed far away from this area 200 years ago and dissolved As is completely trapped within riverbank sediments, the mass of accumulated sediment As can be calculated by multiplying groundwater discharge by ambient aquifer As concentrations measured in 1969 wells. Across all sites, the range of calculated sediment As concentrations in the riverbank is 78-849 mg/kg, which is higher than the observed concentrations (17-599 mg/kg). This discovery supports the hypothesis that the dissolved As in groundwater discharge to the river is sufficient to account for the observed buried deposits of As along riverbanks.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Rios , Sedimentos Geológicos , Compostos Férricos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
4.
Mar Pollut Bull ; 171: 112689, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34256325

RESUMO

Indonesia, the world's largest archipelagic country and the fourth most populated nation, has struggled with coastal water pollution in the last decades. With the increasing population in coastal urban cities, more land-based pollutants are transported to the coastal water and adversely affected the tropical ecosystems. This paper provides an overview of anthropogenic pollutant studies in Indonesian coastal water and ecosystems from 1986 to 2021. Nutrients, heavy metals, organic pollutants, and plastic debris are the most-studied contaminants. We found that 82%, 54% and 50% of the studies exceeding nutrients, heavy metals, and organic pollutants standard limit, respectively; thus, indicating poor water quality status in part of Indonesian coastal water. The coral reef ecosystems is found to be the most sensitive to anthropogenic disturbance. The potential effect of climate change, new coastal pollution hotspots in eastern Indonesia, marine anthropogenic sources, legacy/emerging pollutants, and the need for research related to the biological contamination, are discussed for future opportunities.


Assuntos
Ecossistema , Poluentes Químicos da Água , Recifes de Corais , Monitoramento Ambiental , Indonésia , Plásticos , Poluentes Químicos da Água/análise , Qualidade da Água
5.
Sci Total Environ ; 796: 148968, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34280634

RESUMO

Agricultural land use leads to significant changes in both the quality (e.g., sources and compositions) and quantity of dissolved organic matter (DOM) exported from terrestrial to aquatic ecosystems. However, the effect of agricultural activities often interacts with those of hydroclimatic drivers, making it difficult to delineate agriculture-induced changes and identify associated mechanisms. Using partial least square path modeling (PLS-PM), we examined the relative importance of agricultural land use, stream order, precipitation, and temperature in mediating allochthonous versus autochthonous sources and pathways that influenced stream DOM quality and quantity. We analyzed stream water DOM from 15 small streams draining watersheds across a gradient of agricultural land use in Southeast USA for about one year. For DOM quantity, agricultural land use increased the export of DOC and various DOM pools (terrestrial humic, microbial humic, and protein-like DOM) from land to streams, and for DOM quality, agricultural streams showed greater proportions of microbial humic compounds than forested streams. The PLS-PM model for DOM quantity accounted for 75.5% of total variance and identified that agricultural land use increased stream water DOM quantity primarily through increasing allochthonous inputs, which can be attributed to shallower flow paths in agricultural watersheds that enabled the export of organic materials from the upper, organic-rich soil horizon. PLS-PM models for DOM quality only explained ~13% of the total variance, highlighting the complex dynamics between environmental drivers and stream water DOM. Relative to commonly used multivariate statistic modeling (e.g., redundancy analysis (RDA)), PLS-PM models offer the advantages of identifying the primary pathway by which agricultural lands alter freshwater DOM and quantifying the relative importance of interactive effects of agriculture and hydroclimatic drivers. Therefore, structural equation modeling is a powerful tool that should be more widely adopted to distinguish among multiple drivers and mechanisms regulating freshwater biogeochemistry.


Assuntos
Rios , Solo , Agricultura , Ecossistema , Florestas
6.
PLoS One ; 15(6): e0235235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598345

RESUMO

Mobile Bay, the fourth largest estuary in the USA located in the northern Gulf of Mexico, is known for extreme hypoxia in the water column during dry season caused by NH4+-rich and anoxic submarine groundwater discharge (SGD). Nutrient dynamics in the coastal ecosystem point to potentially elevated microbial activities; however, little is known about microbial community composition and their functional roles in this area. In this study, we investigated microbial community composition, distribution, and metabolic prediction along the coastal hydrological compartment of Mobile Bay using 16S rRNA gene sequencing. We collected microbial samples from surface (river and bay water) and subsurface water (groundwater and coastal pore water from two SGD sites with peat and sandy lithology, respectively). Salinity was identified as the primary factor affecting the distribution of microbial communities across surface water samples, while DON and PO43- were the major predictor of community shift within subsurface water samples. Higher microbial diversity was found in coastal pore water in comparison to surface water samples. Gammaproteobacteria, Bacteroidia, and Oxyphotobacteria dominated the bacterial community. Among the archaea, methanogens were prevalent in the peat-dominated SGD site, while the sandy SGD site was characterized by a higher proportion of ammonia-oxidizing archaea. Cyanobium PCC-6307 and unclassified Thermodesulfovibrionia were identified as dominant taxa strongly associated with trends in environmental parameters in surface and subsurface samples, respectively. Microbial communities found in the groundwater and peat layer consisted of taxa known for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This finding suggested that microbial communities might also play a significant role in mediating nitrogen transformation in the SGD flow path and in affecting the chemical composition of SGD discharging to the water column. Given the ecological importance of microorganisms, further studies at higher taxonomic and functional resolution are needed to accurately predict chemical biotransformation processes along the coastal hydrological continuum, which influence water quality and environmental condition in Mobile Bay.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/análise , Água Subterrânea/microbiologia , Microbiota , Água do Mar/análise , Água do Mar/microbiologia , Golfo do México , Hidrologia , RNA Ribossômico 16S/análise , Movimentos da Água
7.
Environ Sci Technol ; 43(22): 8599-603, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20028058

RESUMO

Natural radon ((222)Rn) and thoron ((220)Rn) can be used as tracers of various chemical and physical processes in the environment. We present here results from an extended series of laboratory experiments intended to improve the automated analysis of (222)Rn and (220)Rn in water using a modified RAD AQUA (Durridge Inc.) system. Previous experience with similar equipment showed that it takes about 30-40 min for the system to equilibrate to radon-in-water concentration increases and even longer for the response to return to baseline after a sharp spike. While the original water/gas exchanger setup was built only for radon-in-water measurement, our goal here is to provide an automated system capable of high resolution and good sensitivity for both radon- and thoron-in-water detections. We found that faster water flow rates substantially improved the response for both isotopes while thoron is detected most efficiently at airflow rates of 3 L/min. Our results show that the optimum conditions for fastest response and sensitivity for both isotopes are at water flow rates up to 17 L/min and an airflow rate of 3 L/min through the detector. Applications for such measurements include prospecting for naturally occurring radioactive material (NORM) in pipelines and locating points of groundwater/surface water interaction.


Assuntos
Água Doce/química , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radônio/análise , Poluentes Radioativos da Água/química , Automação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA