Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Prostate ; 71(5): 480-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20878947

RESUMO

BACKGROUND: Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. METHODS: Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. RESULTS: As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. CONCLUSIONS: Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs.


Assuntos
Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/toxicidade , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacocinética , Animais , Cães , Descoberta de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias da Próstata/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Drug Metab Dispos ; 38(1): 16-24, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19833845

RESUMO

Monkeys have been proposed as an animal model to predict the magnitude of human clinical drug-drug interactions caused by CYP3A4 enzyme induction. To evaluate whether the cynomolgus monkey can be an effective in vivo model, human CYP3A4 inducers were evaluated both in vitro and in vivo. First, a full-length pregnane X receptor (PXR) was cloned from the cynomolgus monkey, and the sequence was compared with those of rhesus monkey and human PXR. Cynomolgus and rhesus monkey PXR differed by only one amino acid (A68V), and both were highly homologous to human PXR (approximately 96%). When the transactivation profiles of 30 compounds, including known inducers of CYP3A4, were compared between cynomolgus and human PXR, a high degree of correlation with EC(50) values was observed. These results suggest that cynomolgus and human PXR respond in a similar fashion to these ligands. Second, two known human CYP3A4 inducers, rifampicin and hyperforin, were tested in monkey and human primary hepatocytes for induction of CYP3A enzymes. Both monkey and human hepatocytes responded similarly to the inducers and resulted in increased RNA and enzyme activity changes of CYP3A8 and CYP3A4, respectively. Lastly, in vivo induction of CYP3A8 by rifampicin and hyperforin was shown by significant reductions of midazolam exposure that were comparable with those in humans. These results show that the cynomolgus monkey can be a predictive in vivo animal model of PXR-mediated induction of human CYP3A4 and can provide a useful assessment of the resulting pharmacokinetic changes of affected drugs.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Hepatócitos/metabolismo , Macaca fascicularis , Receptores de Esteroides/metabolismo , Xenobióticos/farmacocinética , Adulto , Sequência de Aminoácidos , Animais , Compostos Bicíclicos com Pontes/sangue , Compostos Bicíclicos com Pontes/farmacocinética , Compostos Bicíclicos com Pontes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas/genética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Hypericum/química , Macaca mulatta , Masculino , Midazolam/sangue , Midazolam/metabolismo , Midazolam/farmacocinética , Pessoa de Meia-Idade , Modelos Animais , Dados de Sequência Molecular , Floroglucinol/análogos & derivados , Floroglucinol/sangue , Floroglucinol/farmacocinética , Floroglucinol/farmacologia , Extratos Vegetais/sangue , Extratos Vegetais/farmacocinética , Receptor de Pregnano X , Receptores de Esteroides/genética , Rifampina/sangue , Rifampina/farmacocinética , Rifampina/farmacologia , Homologia de Sequência de Aminoácidos , Terpenos/sangue , Terpenos/farmacocinética , Terpenos/farmacologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transfecção
3.
PLoS One ; 9(10): e111385, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360548

RESUMO

BACKGROUND: P2Y(6), a purinergic receptor for UDP, is enriched in atherosclerotic lesions and is implicated in pro-inflammatory responses of key vascular cell types and macrophages. Evidence for its involvement in atherogenesis, however, has been lacking. Here we use cell-based studies and three murine models of atherogenesis to evaluate the impact of P2Y(6) deficiency on atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: Cell-based studies in 1321N1 astrocytoma cells, which lack functional P2Y(6) receptors, showed that exogenous expression of P2Y(6) induces a robust, receptor- and agonist-dependent secretion of inflammatory mediators IL-8, IL-6, MCP-1 and GRO1. P2Y(6)-mediated inflammatory responses were also observed, albeit to a lesser extent, in macrophages endogenously expressing P2Y(6) and in acute peritonitis models of inflammation. To evaluate the role of P2Y(6) in atherosclerotic lesion development, we used P2Y(6)-deficient mice in three mouse models of atherosclerosis. A 43% reduction in aortic arch plaque was observed in high fat-fed LDLR knockout mice lacking P2Y(6) receptors in bone marrow-derived cells. In contrast, no effect on lesion development was observed in fat-fed whole body P2Y(6)xLDLR double knockout mice. Interestingly, in a model of enhanced vascular inflammation using angiotensin II, P2Y(6) deficiency enhanced formation of aneurysms and exhibited a trend towards increased atherosclerosis in the aorta of LDLR knockout mice. CONCLUSIONS: P2Y(6) receptor augments pro-inflammatory responses in macrophages and exhibits a pro-atherogenic role in hematopoietic cells. However, the overall impact of whole body P2Y(6) deficiency on atherosclerosis appears to be modest and could reflect additional roles of P2Y(6) in vascular disease pathophysiologies, such as aneurysm formation.


Assuntos
Aterosclerose/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Aterosclerose/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética
4.
Cancer Res ; 71(3): 801-11, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21266358

RESUMO

Agonist monoclonal antibodies (mAb) to the immune costimulatory molecule CD137, also known as 4-1BB, are presently in clinical trials for cancer treatment on the basis of their costimulatory effects on primed T cells and perhaps other cells of the immune system. Here we provide evidence that CD137 is selectively expressed on the surface of tumor endothelial cells. Hypoxia upregulated CD137 on murine endothelial cells. Treatment of tumor-bearing immunocompromised Rag(-/-) mice with agonist CD137 mAb did not elicit any measurable antiangiogenic effects. In contrast, agonist mAb stimulated tumor endothelial cells, increasing cell surface expression of the adhesion molecules intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin. When adoptively transferred into mice, activated T lymphocytes derived from CD137-deficient animals entered more avidly into tumor tissue after treatment with agonist mAb. This effect could be neutralized with anti-ICAM-1 and anti-VCAM-1 blocking antibodies. Thus, stimulation of CD137 not only enhanced T-cell activation but also augmented their trafficking into malignant tissue, through direct actions on the blood vessels that irrigate the tumor. Our findings identify an additional mechanism of action that can explain the immunotherapeutic effects of agonist CD137 antibodies.


Assuntos
Anticorpos Monoclonais/farmacologia , Células Endoteliais/efeitos dos fármacos , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Transferência Adotiva , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Células Endoteliais/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/biossíntese , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
5.
Endocrinology ; 151(9): 4123-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20610571

RESUMO

The biology of IGF-IR/IR signaling was studied in normal mouse embryonic fibroblasts (MEFs) that were either wild type (wt), heterozygous (het), or null for the IGF-IR. The ability of IGF-I, IGF-II, or insulin to stimulate serum-starved MEFs was characterized by gene expression profiling and biochemical analyses for activation of downstream signals. Each genotypic group of MEFs exhibited distinct patterns of expression both while resting and in response to stimulation. The insulin receptor (IR) pathway in IGF-IR null MEFs was hypersensitive to insulin ligand stimulation resulting in greater AKT phosphorylation than in wt or het MEFs stimulated with the same ligand. Interestingly, the IR pathway hypersensitivity in IGF-IR null MEFs occurred with no observed changes in the levels of IR isoforms A or B. A new small molecule IGF-IR inhibitor (BMS-754807), having equipotent activity against both IGF-IR and IR, proved effective in suppressing both AKT and ERK phosphorylation from both the IGF-IR and IR pathways by all three ligands tested in wt, het, and null MEFs. The use of a dual IGF-IR/IR inhibitor addresses concerns about the use of growth inhibiting therapies directed against the IGF-IR receptor in certain cancers. Lastly, comparison of the antiproliferative effects (IC(50)s) of various compounds in wt vs. null MEFs demonstrates that genetically characterized MEFs provide a simple and inexpensive tool with which to define compounds as having mostly on-target or off-target IGF-IR activities because off-target compounds affect both wt and null MEFs equally.


Assuntos
Proliferação de Células/efeitos dos fármacos , Pirazóis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Triazinas/farmacologia , Animais , Western Blotting , Células Cultivadas , Análise por Conglomerados , Embrião de Mamíferos/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like II/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Cancer Res ; 69(16): 6522-30, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19654297

RESUMO

Despite an excellent initial response to first-line hormonal treatment, most patients with metastatic prostate cancer will succumb to a hormone-refractory form of the disease. Because these tumors are still dependent on a functional androgen receptor (AR), there is a need to find novel and more potent antiandrogens. While searching for small molecules that bind to the AR and inhibit its transcriptional activity, BMS-641988 was discovered. This novel antiandrogen showed an increased (>1 log) potency compared with the standard antiandrogen, bicalutamide, in both binding affinity to the AR and inhibition of AR-mediated transactivation in cell-based reporter assays. In mature rats, BMS-641988 strongly inhibited androgen-dependent growth of the ventral prostate and seminal vesicles. In the CWR-22-BMSLD1 human prostate cancer xenograft model, BMS-641988 showed increased efficacy over bicalutamide (average percent tumor growth inhibition >90% versus <50%), even at exposure levels of bicalutamide 3-fold greater than what can be attained in humans. Furthermore, BMS-641988 was efficacious in CWR-22-BMSLD1 tumors initially refractory to treatment with bicalutamide. BMS-641988 was highly efficacious in the LuCaP 23.1 human prostate xenograft model, inducing stasis throughout the approximately 30-day dosing. To explore the functional mechanisms of BMS-641988, gene expression profiling analysis was done on CWR-22-BMSLD1 xenograft models in mice. Treatment with BMS-641988 resulted in a global gene expression profile more similar to castration compared with that of bicalutamide. Overall, these data highlight that the unique preclinical profile of BMS-641988 may provide additional understanding for the hormonal treatment of prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Imidas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Imidas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res ; 68(6): 1683-90, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339847

RESUMO

Bin3 encodes an evolutionarily conserved and ubiquitously expressed member of the BAR superfamily of curved membrane and GTPase-binding proteins, which includes the BAR, PCH/F-BAR, and I-BAR adapter proteins implicated in signal transduction and vesicular trafficking. In humans, Bin3 maps to chromosome 8p21.3, a region widely implicated in cancer suppression that is often deleted in non-Hodgkin's lymphomas and various epithelial tumors. Yeast studies have suggested roles for this gene in filamentous actin (F-actin) organization and cell division but its physiologic functions in mammals have not been investigated. Here we report that homozygous inactivation of Bin3 in the mouse causes cataracts and an increased susceptibility to lymphomas during aging. The cataract phenotype was marked by multiple morphologic defects in lens fibers, including the development of vacuoles in cortical fibers and a near total loss of F-actin in lens fiber cells but not epithelial cells. Through 1 year of age, no other phenotypes were apparent; however, by 18 months of age, Bin3(-/-) mice exhibited a significantly increased incidence of lymphoma. Bin3 loss did not affect normal cell proliferation, F-actin organization, or susceptibility to oncogenic transformation. In contrast, it increased the proliferation and invasive motility of cells transformed by SV40 large T antigen plus activated ras. Our findings establish functions for Bin3 in lens development and cancer suppression during aging. Further, they define Bin3 as a candidate for an unidentified tumor suppressor that exists at the human chromosome 8p21.3 locus.


Assuntos
Catarata/genética , Linfoma/genética , Proteínas dos Microfilamentos/genética , Actinas/metabolismo , Fatores Etários , Animais , Células COS , Catarata/patologia , Processos de Crescimento Celular/genética , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Chlorocebus aethiops , Citoesqueleto/metabolismo , Deleção de Genes , Predisposição Genética para Doença , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfoma/patologia , Camundongos , Proteínas dos Microfilamentos/deficiência
9.
J Pharmacol Exp Ther ; 302(2): 795-803, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12130746

RESUMO

Alternative splicing of the human beta-aspartyl (asparaginyl) hydroxylase (BAH) gene results in the expression of humbug, a truncated form of BAH that lacks the catalytic domain of the enzyme. Overexpression of BAH and humbug has been associated with a variety of human cancers, and although humbug lacks enzymatic activity, it is expressed at levels comparable with that of BAH in various cancer cell lines. Phosphorothioate antisense oligonucleotides (ONs) were designed to dissect out the function of these hydroxylase protein isoforms. In A549 cells, these ONs differentially down-regulated BAH and humbug at the mRNA and protein level. Phosphorothioate ON uptake and antisense studies were conducted in parallel in nude mice bearing A549 tumor xenografts. Microscopic examination of the tumor after administration of a fluorescein-labeled ON showed strong labeling of the outer layers of the tumor connective tissue but cells within the interior of the tumor were sparsely labeled. A modest but significant effect on tumor growth was observed in animals treated with an antisense ON directed against both BAH and humbug transcripts. However, Northern analysis of tumor RNA did not indicate a down-regulation of the targeted mRNA species. These results demonstrate the successful development of antisense ONs that selectively differentiate between the closely related beta-hydroxylase protein isoforms. However, determination of the biological function of these proteins in vivo was limited by the poor uptake properties of phosphorothioate ONs in A549 tumors.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Oxigenases de Função Mista/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Humanos , Isoenzimas/genética , Neoplasias Pulmonares , Deleção de Sequência , Células Tumorais Cultivadas
10.
J Biol Chem ; 277(15): 12970-7, 2002 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-11773073

RESUMO

The BAH genomic locus encodes three distinct proteins: junctin, humbug, and BAH. All three proteins share common exons, but differ significantly based upon the use of alternative terminal exons. The biological roles of BAH and humbug and their functional relationship to junctin remain unclear. To evaluate the role of BAH in vivo, the catalytic domain of BAH was specifically targeted such that the coding regions of junctin and humbug remained undisturbed. BAH null mice lack measurable BAH protein in several tissues, lack aspartyl beta-hydroxylase activity in liver preparations, and exhibit no hydroxylation of the epidermal growth factor (EGF) domain of clotting Factor X. In addition to reduced fertility in females, BAH null mice display several developmental defects including syndactyly, facial dysmorphology, and a mild defect in hard palate formation. The developmental defects present in BAH null mice are similar to defects observed in knock-outs and hypomorphs of the Notch ligand Serrate-2. In this work, beta-hydroxylation of Asp residues in EGF domains is demonstrated for a soluble form of a Notch ligand, human Jagged-1. These results along with recent reports that another post-translational modification of EGF domains in Notch gene family members (glycosylation by Fringe) alters Notch pathway signaling, lends credence to the suggestion that aspartyl beta-hydroxylation may represent another post-translational modification of EGF domains that can modulate Notch pathway signaling. Previous work has demonstrated increased levels of BAH in certain tumor tissues and a role for BAH in tumorigenesis has been proposed. The role of hydroxylase in tumor formation was tested directly by crossing BAH KO mice with an intestinal tumor model, APCmin mice. Surprisingly, BAH null/APCmin mice show a statistically significant increase in both intestinal polyp size and number when compared with BAH wild-type/APCmin controls. These results suggest that, in contrast to expectations, loss of BAH catalytic activity may promote tumor formation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Neoplasias Intestinais/genética , Oxigenases de Função Mista/genética , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Domínio Catalítico , Éxons , Feminino , Hidroxilação , Incidência , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Receptores Notch
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA