Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 16950-16962, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38832898

RESUMO

Nowadays, plastic waste threatens public health and the natural ecosystems of our lives. It is highly beneficial to recycle plastic waste in order to maximize the reuse of its contained carbon sources for the development of other valuable products. Unfortunately, traditional techniques usually require significant energy consumption and result in the generation of hazardous waste. Herein, the up-to-date developments on the "green" strategies under mild conditions including electrocatalysis, photocatalysis, and photoelectrocatalysis of plastic wastes are presented. During the oxidation of plastics in these "green" strategies, corresponding reduction reactions usually exist, which affect the property of catalytic plastics conversion. Particularly, we mainly focus on how to design the corresponding half reactions, such as the water reduction, carbon dioxide reduction, and nitrate reduction. Finally, we provide forward-looking insight into the enhancement of these "green" strategies, the extension of more half reactions into other organic catalysis, a comprehensive exploration of the underlying mechanisms through in situ studies and theoretical analysis and the problems for practical applications that needs to be solved.

2.
Angew Chem Int Ed Engl ; : e202414453, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294097

RESUMO

The endeavor to drive CO2 photoreduction towards the synthesis of C2 products is largely thwarted by the colossal energy hurdle inherent in C-C coupling. Herein, we load active metal particles on metal oxide nanosheets to build the dual metal pair sites for steering C-C coupling to form C2 products. Taking Pd particles anchored on the Nb2O5 nanosheets as an example, the high-angle annular dark-field image and X-ray photoelectron spectroscopy demonstrate the presence of Pd-Nb metal pair sites on the Pd-Nb2O5 nanosheets. Density functional theory calculations reveal these sites exhibit a low reaction energy barrier of only 1.02 eV for C-C coupling, implying that the introduction of Pd particles effectively tailors the reaction step to form C2 products. Therefore, the Pd-Nb2O5 nanosheets achieve a CH3COOH evolution rate of 13.5 µmol g-1 h-1 in photoreduction of atmospheric-concentration CO2, outshining all other single photocatalysts reported to date under analogous conditions.

3.
Angew Chem Int Ed Engl ; 63(13): e202400828, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38326235

RESUMO

Targeted synthesis of acetic acid (CH3 COOH) from CO2 photoreduction under mild conditions mainly limits by the kinetic challenge of the C-C coupling. Herein, we utilized doping engineering to build charge-asymmetrical metal pair sites for boosted C-C coupling, enhancing the activity and selectivity of CO2 photoreduction towards CH3 COOH. As a prototype, the Pd doped Co3 O4 atomic layers are synthesized, where the established charge-asymmetrical cobalt pair sites are verified by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Theoretical calculations not only reveal the charge-asymmetrical cobalt pair sites caused by Pd atom doping, but also manifest the promoted C-C coupling of double *COOH intermediates through shortening of the coupled C-C bond distance from 1.54 to 1.52 Å and lowering their formation energy barrier from 0.77 to 0.33 eV. Importantly, the decreased reaction energy barrier from the protonation of two*COOH into *CO intermediates for the Pd-Co3 O4 atomic layer slab is 0.49 eV, higher than that of the Co3 O4 atomic layer slab (0.41 eV). Therefore, the Pd-Co3 O4 atomic layers exhibit the CH3 COOH evolution rate of ca. 13.8 µmol g-1 h-1 with near 100% selectivity, both of which outperform all previously reported single photocatalysts for CO2 photoreduction towards CH3 COOH under similar conditions.

4.
ACS Appl Mater Interfaces ; 16(28): 35865-35873, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38970473

RESUMO

Solar-driven plastics conversion into valuable fuels has attracted broad attention in recent years, which has enormous potential for plastics recycling in the future. However, it usually encounters low conversion efficiency, where one of the reasons is attributed to the poor carrier dynamics in the photocatalytic process. In this Perspective, we critically review the developed strategies, involving defect engineering, doping engineering, heterojunction engineering, and composite construction, for boosted carrier separation efficiency. In addition, we provide an outlook for more potential strategies to engineer catalysts for promoted carrier dynamics. Finally, we also propose prospects for the future research direction of plastics photoconversion into fuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA