Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ren Nutr ; 32(2): 178-188, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34688540

RESUMO

OBJECTIVE: Vascular calcification (VC) is an important risk factor for cardiovascular disease in maintenance hemodialysis (MHD) patients. Hyperphosphatemia and microinflammation statement are known major contributors to the development of VC; however, the mechanisms are unknown. The aims of this study were to explore the risk factors of VC in MHD patients and to explore whether high phosphate could increase the secretion of inflammatory cytokines via PiT-1 in monocytes. METHODS: A cross-sectional study was conducted on 65 MHD patients to assess the relevance of coronary artery calcification (CAC), inflammatory factors, serum phosphate, and sodium-dependent phosphate cotransporter (NPT) mRNA expression of peripheral blood mononuclear cells (PBMCs). Multivariate logistic regression analysis was used to analyze the predictors of CAC. The calcification effects of high phosphate (HP), TNF-α, and supernatants of healthy human monocytes treated with HP were further evaluated in cultured HASMCs. RESULTS: Diabetes, longer dialysis vintage, higher serum TNF-α levels, and PiT-1 mRNA expression of PBMCs) were independent risk factors of CAC in MHD patients. The mRNA levels of PiT-1 in PBMCs were positively correlated with serum phosphate, CAC scores, and Pit-2 mRNA levels of PBMCs. The expressions of TNF-α, IL-6, and PiT-1 in human monocytes were significantly increased in a dose-dependent manner after treatment with HP, which was subsequently inhibited by NPT antagonist phosphonoformic acid. Neither TNF-α alone nor supernatants of monocytes stimulated with HP promoted the expression of osteopontin and Runt-related transcription factor 2 (Runx2) or caused mineralization in human aortic smooth muscle cells, but combined with HP intervention, the calcification effects were markedly increased in human aortic smooth muscle cells and ameliorated by phosphonoformic acid treatment. CONCLUSION: Hyperphosphatemia directly increased the synthesis and secretion of TNF-α by monocytes may via PiT-1 pathway, resulting in elevated systemic inflammatory response, which may further aggravate VC induced by phosphate overload in MHD patients.


Assuntos
Hiperfosfatemia , Uremia , Calcificação Vascular , Células Cultivadas , Estudos Transversais , Feminino , Foscarnet/efeitos adversos , Foscarnet/metabolismo , Humanos , Hiperfosfatemia/complicações , Leucócitos Mononucleares/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Fosfatos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Fator de Necrose Tumoral alfa/genética , Uremia/complicações , Uremia/metabolismo , Calcificação Vascular/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA