RESUMO
Identification of autophagic protein cargo in plants in autophagy-related genes (ATG) mutants is complicated by changes in protein synthesis and protein degradation. To detect autophagic cargo, we measured protein degradation rate in shoots and roots of Arabidopsis (Arabidopsis thaliana) atg5 and atg11 mutants. These data show that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific glycolytic enzymes and of other cytosol, chloroplast, and ER-resident proteins, and a specialized role for ATG11 in degradation of proteins from mitochondria and chloroplasts. Protein localization in transformed protoplasts and degradation assays in the presence of inhibitors confirm a role for autophagy in degrading glycolytic enzymes. Autophagy induction by phosphate (Pi) limitation changed metabolic profiles and the protein synthesis and degradation rates of atg5 and atg11 plants. A general decrease in the abundance of amino acids and increase in secondary metabolites in autophagy mutants was consistent with altered catabolism and changes in energy conversion caused by reduced degradation rate of specific proteins. Combining measures of changes in protein abundance and degradation rates, we also identify ATG11 and ATG5-associated protein cargo of low Pi-induced autophagy in chloroplasts and ER-resident proteins involved in secondary metabolism.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Fosfatos/metabolismoRESUMO
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Assuntos
Citocromo P-450 CYP1A1 , Citocromo P-450 CYP1A2 , Animais , Humanos , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mamíferos/metabolismoRESUMO
This study aimed to characterize the effects of arsenic exposure on the expression of microsomal epoxide hydrolase (mEH or EPHX1) and soluble epoxide hydrolase (sEH or EPHX2) in the liver and small intestine. C57BL/6 mice were exposed to sodium arsenite in drinking water at various doses for up to 28 days. Intestinal, but not hepatic, mEH mRNA and protein expression was induced by arsenic at 25 ppm, in both males and females, whereas hepatic mEH expression was induced by arsenic at 50 or 100 ppm. The induction of mEH was gene specific, as the arsenic exposure did not induce sEH expression in either tissue. Within the small intestine, mEH expression was induced only in the proximal, but not the distal segments. The induction of intestinal mEH was accompanied by increases in microsomal enzymatic activities toward a model mEH substrate, cis-stilbene oxide, and an epoxide-containing drug, oprozomib, in vitro, and by increases in the levels of PR-176, the main hydrolysis metabolite of oprozomib, in the proximal small intestine of oprozomib-treated mice. These findings suggest that intestinal mEH, playing a major role in converting xenobiotic epoxides to less reactive diols, but not sEH, preferring endogenous epoxides as substrates, is relevant to the adverse effects of arsenic exposure, and that further studies of the interactions between drinking water arsenic exposure and the disposition or possible adverse effects of epoxide-containing drugs and other xenobiotic compounds in the intestine are warranted. SIGNIFICANCE STATEMENT: Consumption of arsenic-contaminated water has been associated with increased risks of various adverse health effects, such as diabetes, in humans. The small intestinal epithelial cells are the main site of absorption of ingested arsenic, but they are not well characterized for arsenic exposure-related changes. This study identified gene expression changes in the small intestine that may be mechanistically linked to the adverse effects of arsenic exposure and possible interactions between arsenic ingestion and the pharmacokinetics of epoxide-containing drugs in vivo.
Assuntos
Água Potável , Epóxido Hidrolases , Intestino Delgado , Camundongos Endogâmicos C57BL , Animais , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Camundongos , Masculino , Feminino , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/enzimologia , Arsênio/toxicidade , Arsênio/metabolismo , Arsenitos/toxicidade , Arsenitos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Microssomos/enzimologia , Compostos de Sódio/toxicidadeRESUMO
Pollen wall assembly is crucial for pollen development and plant fertility. The durable biopolymer sporopollenin and the constituents of the tryphine coat are delivered to developing pollen grains by the highly coordinated secretory activity of the surrounding tapetal cells. The role of membrane trafficking in this process, however, is largely unknown. In this study, we used Arabidopsis thaliana to characterize the role of two late-acting endosomal sorting complex required for transport (ESCRT) components, ISTL1 and LIP5, in tapetal function. Plants lacking ISTL1 and LIP5 form pollen with aberrant exine patterns, leading to partial pollen lethality. We found that ISTL1 and LIP5 are required for exocytosis of plasma membrane and secreted proteins in the tapetal cells at the free microspore stage, contributing to pollen wall development and tryphine deposition. Whereas the ESCRT machinery is well known for its role in endosomal trafficking, the function of ISTL1 and LIP5 in exocytosis is not a typical ESCRT function. The istl1 lip5 double mutants also show reduced intralumenal vesicle concatenation in multivesicular endosomes in both tapetal cells and developing pollen grains as well as morphological defects in early endosomes/trans-Golgi networks, suggesting that late ESCRT components function in the early endosomal pathway and exocytosis.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Pólen/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Ceras/química , Ceras/metabolismoRESUMO
BACKGROUND: Cerebral small vessel injury, including loss of endothelial tight junctions, endothelial dysfunction, and blood-brain barrier breakdown, is an early and typical pathology for Alzheimer's disease, cerebral amyloid angiopathy, and hypertension-related cerebral small vessel disease. Whether there is a common mechanism contributing to these cerebrovascular alterations remains unclear. Studies have shown an elevation of BACE1 (ß-site amyloid precursor protein cleaving enzyme 1) in cerebral vessels from cerebral amyloid angiopathy or Alzheimer's disease patients, suggesting that vascular BACE1 may involve in cerebral small vessel injury. METHODS: To understand the contribution of vascular BACE1 to cerebrovascular impairments, we combined cellular and molecular techniques, mass spectrometry, immunostaining approaches, and functional testing to elucidate the potential pathological mechanisms. RESULTS: We observe a 3.71-fold increase in BACE1 expression in the cerebral microvessels from patients with hypertension. Importantly, we discover that an endothelial tight junction protein, occludin, is a completely new substrate for endothelial BACE1. BACE1 cleaves occludin with full-length occludin reductions and occludin fragment productions. An excessive cleavage by elevated BACE1 induces membranal accumulation of caveolin-1 and subsequent caveolin-1-mediated endocytosis, resulting in lysosomal degradation of other tight junction proteins. Meanwhile, membranal caveolin-1 increases the binding to eNOS (endothelial nitric oxide synthase), together with raised circulating Aß (ß-amyloid peptides) produced by elevated BACE1, leading to an attenuation of eNOS activity and resultant endothelial dysfunction. Furthermore, the initial endothelial damage provokes chronic reduction of cerebral blood flow, blood-brain barrier leakage, microbleeds, tau hyperphosphorylation, synaptic loss, and cognitive impairment in endothelial-specific BACE1 transgenic mice. Conversely, inhibition of aberrant BACE1 activity ameliorates tight junction loss, endothelial dysfunction, and memory deficits. CONCLUSIONS: Our findings establish a novel and direct relationship between endothelial BACE1 and cerebral small vessel damage, indicating that abnormal elevation of endothelial BACE1 is a new mechanism for cerebral small vessel disease pathogenesis.
Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doenças de Pequenos Vasos Cerebrais , Hipertensão , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/metabolismo , Humanos , Hipertensão/complicações , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/metabolismo , Ocludina/metabolismo , Proteínas de Junções Íntimas , Junções Íntimas/metabolismoRESUMO
Excessive production of reactive oxygen species (ROS) around titanium implants under diabetic conditions causes persistent inflammation, leading to poor osseointegration and even implant failure. Surface modification is an effective way to promote ROS clearance, alleviate inflammation, and stimulate bone formation. In this study, a multifunctional coating is fabricated by introducing cerium (Ce)-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) onto the titanium surface via an electrophoretic deposition method. The incorporation of Ce-MBGNs remarkably improves surface hydrophilicity by increasing the surface areas. The bioactive ions are appropriately released, thereby promoting mesenchymal stem cell proliferation and differentiation under diabetic conditions. The conversion between Ce(III) and Ce(IV) endows Ce-MBGNs coating with antioxidative nanoenzymes properties to scavenge diabetes-induced ROS, resulting in macrophage polarization towards the anti-inflammatory phenotype. The therapeutic effect of Ce-MBGNs-modified titanium implants is also verified in diabetic rats by inhibiting inflammatory responses and accelerating early osseointegration. Taken together, the findings reveal that the ROS-scavenging and immunomodulation activity of the Ce-MBGNs coating contributes to enhanced osseointegration, and provides a novel implant surface for diabetic patients.
Assuntos
Cério , Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Nanopartículas , Osseointegração , Espécies Reativas de Oxigênio , Titânio , Cério/química , Cério/farmacologia , Osseointegração/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ratos , Titânio/química , Titânio/farmacologia , Nanopartículas/química , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos Sprague-Dawley , Próteses e Implantes , Propriedades de Superfície , Porosidade , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/químicaRESUMO
BACKGROUND: While large language models (LLMs) such as ChatGPT and Google Bard have shown significant promise in various fields, their broader impact on enhancing patient health care access and quality, particularly in specialized domains such as oral health, requires comprehensive evaluation. OBJECTIVE: This study aims to assess the effectiveness of Google Bard, ChatGPT-3.5, and ChatGPT-4 in offering recommendations for common oral health issues, benchmarked against responses from human dental experts. METHODS: This comparative analysis used 40 questions derived from patient surveys on prevalent oral diseases, which were executed in a simulated clinical environment. Responses, obtained from both human experts and LLMs, were subject to a blinded evaluation process by experienced dentists and lay users, focusing on readability, appropriateness, harmlessness, comprehensiveness, intent capture, and helpfulness. Additionally, the stability of artificial intelligence responses was also assessed by submitting each question 3 times under consistent conditions. RESULTS: Google Bard excelled in readability but lagged in appropriateness when compared to human experts (mean 8.51, SD 0.37 vs mean 9.60, SD 0.33; P=.03). ChatGPT-3.5 and ChatGPT-4, however, performed comparably with human experts in terms of appropriateness (mean 8.96, SD 0.35 and mean 9.34, SD 0.47, respectively), with ChatGPT-4 demonstrating the highest stability and reliability. Furthermore, all 3 LLMs received superior harmlessness scores comparable to human experts, with lay users finding minimal differences in helpfulness and intent capture between the artificial intelligence models and human responses. CONCLUSIONS: LLMs, particularly ChatGPT-4, show potential in oral health care, providing patient-centric information for enhancing patient education and clinical care. The observed performance variations underscore the need for ongoing refinement and ethical considerations in health care settings. Future research focuses on developing strategies for the safe integration of LLMs in health care settings.
Assuntos
Autogestão , Humanos , Autogestão/métodos , Inteligência Artificial , Acessibilidade aos Serviços de Saúde , Idioma , Saúde BucalRESUMO
Most transgenic mouse models are generated through random integration of the transgene. The location of the transgene provides valuable information for assessing potential effects of the transgenesis on the host and for designing genotyping protocols that can amplify across the integration site, but it is challenging to identify. Here, we report the successful utility of optical genome mapping technology to identify the transgene insertion site in a CYP2A13/2B6/2F1-transgenic mouse model, which produces three human cytochrome P450 (P450) enzymes (CYP2A13, CYP2B6, and CYP2F1) that are encoded by neighboring genes on human chromosome 19. These enzymes metabolize many drugs, respiratory toxicants, and chemical carcinogens. Initial efforts to identify candidate insertion sites by whole genome sequencing was unsuccessful, apparently because the transgene is located in a region of the mouse genome that contains highly repetitive sequences. Subsequent utility of the optical genome mapping approach, which compares genome-wide marker distribution between the transgenic mouse genome and a reference mouse (GRCm38) or human (GRCh38) genome, localized the insertion site to mouse chromosome 14, between two marker positions at 4451324 base pair and 4485032 base pair. A transgene-mouse genome junction sequence was further identified through long-polymerase chain reaction amplification and DNA sequencing at GRCm38 Chr.14:4484726. The transgene insertion (â¼2.4 megabase pair) contained 5-7 copies of the human transgenes, which replaced a 26.9-33.4 kilobase pair mouse genomic region, including exons 1-4 of Gm3182, a predicted and highly redundant gene. Finally, the sequencing results enabled the design of a new genotyping protocol that can distinguish between hemizygous and homozygous CYP2A13/2B6/2F1-transgenic mice. SIGNIFICANCE STATEMENT: This study characterizes the genomic structure of, and provides a new genotyping method for, a transgenic mouse model that expresses three human P450 enzymes, CYP2A13, CYP2B6, and CYP2F1, that are important in xenobiotic metabolism and toxicity. The demonstrated success in applying the optical genome mapping technology for identification of transgene insertion sites should encourage others to do the same for other transgenic models generated through random integration, including most of the currently available human P450 transgenic mouse models.
Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450 , Camundongos , Animais , Humanos , Camundongos Transgênicos , Citocromo P-450 CYP2B6/genética , Sistema Enzimático do Citocromo P-450/genética , Transgenes/genética , Modelos Animais de Doenças , Mapeamento Cromossômico/métodos , Hidrocarboneto de Aril Hidroxilases/genéticaRESUMO
Autophagic recycling of proteins, lipids, nucleic acids, carbohydrates, and organelles is essential for cellular homeostasis and optimal health, especially under nutrient-limiting conditions. To better understand how this turnover affects plant growth, development, and survival upon nutrient stress, we applied an integrated multiomics approach to study maize (Zea mays) autophagy mutants subjected to fixed-carbon starvation induced by darkness. Broad metabolic alterations were evident in leaves missing the core autophagy component ATG12 under normal growth conditions (e.g., lipids and secondary metabolism), while changes in amino acid-, carbohydrate-, and nucleotide-related metabolites selectively emerged during fixed-carbon starvation. Through combined proteomic and transcriptomic analyses, we identified numerous autophagy-responsive proteins, which revealed processes underpinning the various metabolic changes seen during carbon stress as well as potential autophagic cargo. Strikingly, a strong upregulation of various catabolic processes was observed in the absence of autophagy, including increases in simple carbohydrate levels with a commensurate drop in starch levels, elevated free amino acid levels with a corresponding reduction in intact protein levels, and a strong increase in the abundance of several nitrogen-rich nucleotide catabolites. Altogether, this analysis showed that fixed-carbon starvation in the absence of autophagy adjusts the choice of respiratory substrates, promotes the transition of peroxisomes to glyoxysomes, and enhances the retention of assimilated nitrogen.
Assuntos
Aminoácidos/metabolismo , Autofagia/fisiologia , Carbono/metabolismo , Zea mays/citologia , Zea mays/metabolismo , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Escuridão , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Mutação , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Zea mays/genéticaRESUMO
Polychlorinated biphenyls (PCBs) are environmental contaminants that can cause neurotoxicity. PCBs, such as PCB 95 (2,2',3,5',6-pentachlorobiphenyl), can be metabolized by cytochrome P450 enzymes into neurotoxic metabolites. To better understand how the metabolism of PCB 95 affects neurotoxic outcomes, we conducted a study on the disposition of PCB 95 in transgenic mouse models. The mice were given a single oral dose of PCB 95 (1.0 mg/kg) and were euthanized 24 h later for analysis. PCB 95 levels were highest in adipose tissue, followed by the liver, brain, and blood. Adipose tissue levels were significantly higher in wild-type (WT) mice than in Cyp2abfgs-null (KO) or CYP2A6-transgenic (KI) mice. We also observed genotype-dependent differences in the enrichment of aS-PCB 95 in female mice, with a less pronounced enrichment in KO than WT and KI mice. Ten hydroxylated PCB 95 metabolites were detected in blood and tissue across all exposure groups. The metabolite profiles differed across tissues, while sex and genotype-dependent differences were less pronounced. Total OH-PCB levels were highest in the blood, followed by the liver, adipose tissue, and brain. Total OH-PCB blood levels were lower in KO than in WT mice, while the opposite trend was observed in the liver. In male mice, total OH-PCB metabolite levels were significantly lower in KI than in WT mice in blood and the liver, while the opposite trend was observed in female mice. In conclusion, the study highlights the differences in the atropselective disposition of PCB 95 and its metabolites in different types of mice, demonstrating the usefulness of these transgenic mouse models for characterizing the role of PCB metabolism in PCB neurotoxicity.
Assuntos
Bifenilos Policlorados , Camundongos , Masculino , Feminino , Animais , Bifenilos Policlorados/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Hidroxilação , Camundongos TransgênicosRESUMO
The PM2.5-bounded elements were measured in outdoor and indoor from two urban middle schools in Xi'an. The PM2.5 mass was from 42.4 to 283.7 µg/m3 with bounded element from 3.4 to 41.7 µg/m3. Both the particle mass and the bounded elements displayed higher levels compared with previous studies in school environments. The most abundant elements were Ca, K, Fe, S, Zn and Cl both indoor and outdoor in two schools, which accounted for about 90% of the total elements. Strong correlations between indoor and outdoor were obtained along with relative effect from students' and teachers' activities on the indoor distributions between workdays and weekends. There had different indoor/outdoor (I/O) distributions for the two schools. It revealed the main outdoor sources for elements in JT and predominance of indoor sources in HT. The principal component analysis investigated main sources of elements in this study were coal combustion, geogenic dust and industrial emission, even though there displayed differences in the two school classrooms. The health risk assessment showed that the cancer risk for Ni and Pb was below the safe value while As and Cr might pose acceptable potential threat to both students' and teachers' health. The total non-cancer risks of accumulative multi-metals in JT exhibited to be higher than 1, indicating that there existed the potential non-carcinogenic health risks of exposure metals.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Oligoelementos , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Oligoelementos/análise , Poeira/análise , Medição de Risco , Instituições Acadêmicas , China , Monitoramento Ambiental , Material Particulado/análiseRESUMO
The translational value of high-throughput toxicity testing will depend on pharmacokinetic validation. Yet, popular in vitro airway epithelia models were optimized for structure and mucociliary function without considering the bioactivation or detoxification capabilities of lung-specific enzymes. This study evaluated xenobiotic metabolism maintenance within differentiated air-liquid interface (ALI) airway epithelial cell cultures (human bronchial; human, rhesus, and mouse tracheal), isolated airway epithelial cells (human, rhesus, and mouse tracheal; rhesus bronchial), and ex vivo microdissected airways (rhesus and mouse) by measuring gene expression, glutathione content, and naphthalene metabolism. Glutathione levels and detoxification gene transcripts were measured after 1-h exposure to 80 µM naphthalene (a bioactivated toxicant) or reactive naphthoquinone metabolites. Glutathione and glutathione-related enzyme transcript levels were maintained in ALI cultures from all species relative to source tissues, while cytochrome P450 monooxygenase gene expression declined. Notable species differences among the models included a 40-fold lower total glutathione content for mouse ALI trachea cells relative to human and rhesus; a higher rate of naphthalene metabolism in mouse ALI cultures for naphthalene-glutathione formation (100-fold over rhesus) and naphthalene-dihydrodiol production (10-fold over human); and opposite effects of 1,2-naphthoquinone exposure in some models-glutathione was depleted in rhesus tissue but rose in mouse ALI samples. The responses of an immortalized bronchial cell line to naphthalene and naphthoquinones were inconsistent with those of human ALI cultures. These findings of preserved species differences and the altered balance of phase I and phase II xenobiotic metabolism among the characterized in vitro models should be considered for future pulmonary toxicity testing.
Assuntos
Brônquios , Xenobióticos , Animais , Brônquios/metabolismo , Glutationa/metabolismo , Humanos , Macaca mulatta/metabolismo , Camundongos , Naftalenos/toxicidade , Especificidade da Espécie , Xenobióticos/farmacologiaRESUMO
Chiral polychlorinated biphenyls (PCB) are environmentally relevant developmental neurotoxicants. Because their hydroxylated metabolites (OH-PCBs) are also neurotoxic, it is necessary to determine how PCB metabolism affects the developing brain, for example, in mouse models. Because the cytochrome P450 isoforms involved in the metabolism of chiral PCBs remain unexplored, we investigated the metabolism of PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), and PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) using liver microsomes from male and female Cyp2a(4/5)bgs-null, Cyp2f2-null, and wild-type mice. Microsomes, pooled by sex, were incubated with 50 µM PCB for 30 min, and the levels and enantiomeric fractions of the OH-PCBs were determined gas chromatographically. All four PCB congeners appear to be atropselectively metabolized by CYP2A(4/5)BGS and CYP2F2 enzymes in a congener- and sex-dependent manner. The OH-PCB metabolite profiles of PCB 91 and PCB 132, PCB congeners with one para-chlorine substituent, differed between null and wild-type mice. No differences in the metabolite profiles were observed for PCB 95 and PCB 136, PCB congeners without a para-chlorine group. These findings suggest that Cyp2a(4/5)bgs-null and Cyp2f2-null mice can be used to study how a loss of a specific metabolic function (e.g., deletion of Cyp2a(4/5)bgs or Cyp2f2) affects the toxicity of chiral PCB congeners.
Assuntos
Bifenilos Policlorados , Masculino , Feminino , Camundongos , Animais , Bifenilos Policlorados/metabolismo , Microssomos Hepáticos/metabolismo , Família 2 do Citocromo P450/metabolismo , Camundongos Transgênicos , Cloro/metabolismo , Hidroxilação , Camundongos KnockoutRESUMO
Laboratory studies of the disposition and toxicity of hydroxylated polychlorinated biphenyl (OH-PCB) metabolites are challenging because authentic analytical standards for most unknown OH-PCBs are not available. To assist with the characterization of these OH-PCBs (as methylated derivatives), we developed machine learning-based models with multiple linear regression (MLR) or random forest regression (RFR) to predict the relative retention times (RRT) and MS/MS responses of methoxylated (MeO-)PCBs on a gas chromatograph-tandem mass spectrometry system. The final MLR model estimated the retention times of MeO-PCBs with a mean absolute error of 0.55 min (n = 121). The similarity coefficients cos θ between the predicted (by RFR model) and experimental MS/MS data of MeO-PCBs were >0.95 for 92% of observations (n = 96). The levels of MeO-PCBs quantified with the predicted MS/MS response factors approximated the experimental values within a 2-fold difference for 85% of observations and 3-fold differences for all observations (n = 89). Subsequently, these model predictions were used to assist with the identification of OH-PCB 95 or OH-PCB 28 metabolites in mouse feces or liver by suggesting candidate ranking information for identifying the metabolite isomers. Thus, predicted retention and MS/MS response data can assist in identifying unknown OH-PCBs.
Assuntos
Bifenilos Policlorados , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Aprendizado de Máquina , Camundongos , Bifenilos Policlorados/metabolismo , Espectrometria de Massas em TandemRESUMO
Pyrrolizidine alkaloids (PAs) are common phytotoxins with both hepatotoxicity and pneumotoxicity. Hepatic cytochrome P450 enzymes are known to bioactivate PAs into reactive metabolites, which can interact with proteins to form pyrrole-protein adducts and cause intrahepatic cytotoxicity. However, the metabolic and initiation biochemical mechanisms underlying PA-induced pneumotoxicity remain unclear. To investigate the in vivo metabolism basis for PA-induced lung injury, this study used mice with conditional deletion of the cytochrome P450 reductase (Cpr) gene and resultant tissue-selective ablation of microsomal P450 enzyme activities. After oral exposure to monocrotaline (MCT), a pneumotoxic PA widely used to establish animal lung injury models, liver-specific Cpr-null (LCN) mice, but not extrahepatic Cpr-low (xh-CL) mice, had significantly lower level of pyrrole-protein adducts in the serum, liver and lungs compared with wild-type (WT) mice. While MCT-exposed LCN mice had significantly higher blood concentration of intact MCT, compared to MCT-exposed WT or xh-CL mice. Consistent with the MCT in vivo bioactivation data, MCT-induced lung injury, represented by vasculature damage, in WT and xh-CL mice but not LCN mice. Furthermore, reactive metabolites of MCT were confirmed to exist in the blood efflux from the hepatic veins of MCT-exposed rats. Our results provide the first mode-of-action evidence that hepatic P450s are essential for the bioactivation of MCT, and blood circulating reactive metabolites of MCT to the lung causes pneumotoxicity. Collectively, this study presents the scientific basis for the application of MCT in animal lung injury models, and more importantly, warrants public awareness and further investigations of lung diseases associated with exposure to not only MCT but also different PAs.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Monocrotalina/toxicidade , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ativação Metabólica , Animais , Isoenzimas , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monocrotalina/sangue , NADPH-Ferri-Hemoproteína Redutase/genética , Ligação Proteica , Ratos Sprague-Dawley , ToxicocinéticaRESUMO
The bacteria-mediated inflammatory conditions adversely affect the osseointegration process of endosseous implants, which can even lead to implant malfunction or failure. Local drug delivery has been designed to exert anti-inflammatory and antibacterial activities, but whether this strategy has an effect on the compromised osseointegration under inflammation has rarely been studied. The present study focused on the osteoinductive efficacy of two known phytoestrogens [bergapten (BP) and quercetin (QE)] on implant sites under multiple bacteria-infected conditions in situ. Furthermore, the gene expression profiles of rat bone mesenchymal stem cells (rBMSCs) treated with BP and QE in the presence of Porphyromonas gingivalis-derived lipopolysaccharide were identified. The results showed that both drugs, especially QE, had significant potentiating effects on promoting osteogenic differentiation of rBMSCs, resisting multiple pathogens, and reducing inflammatory activity. Meanwhile, RNA sequencing analysis highlighted the enriched gene ontology terms and the differentially expressed genes (Vps25, Il1r2, Csf3, Efemp1, and Ccl20) that might play essential roles in regulating the above tri-effects, which provided the basis for the drug delivery system to be used as a novel therapeutic strategy for integrating peri-implant health. Overall, our study confirmed that QE appeared to outperform BP in osteogenesis and bacterial killing but not in anti-inflammation. Moreover, both drugs possess favorable tri-effects and can serve as the pivotal agents for the drug delivery system to boost osseointegration at inflammatory implant sites.
Assuntos
5-Metoxipsoraleno/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fitoestrógenos/farmacologia , Quercetina/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Lipopolissacarídeos/farmacologia , Masculino , Osseointegração/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Próteses e Implantes/microbiologia , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacosRESUMO
Our ability to identify genes that participate in cell growth and division is limited because their loss often leads to lethality. A solution to this is to isolate conditional mutants where the phenotype is visible under restrictive conditions. Here, we capitalize on the haploid growth-phase of the moss Physcomitrella patens to identify conditional loss-of-growth (CLoG) mutants with impaired growth at high temperature. We used whole-genome sequencing of pooled segregants to pinpoint the lesion of one of these mutants (clog1) and validated the identified mutation by rescuing the conditional phenotype by homologous recombination. We found that CLoG1 is a novel and ancient gene conserved in plants. At the restrictive temperature, clog1 plants have smaller cells but can complete cell division, indicating an important role of CLoG1 in cell growth, but not an essential role in cell division. Fluorescent protein fusions of CLoG1 indicate it is localized to microtubules with a bias towards depolymerizing microtubule ends. Silencing CLoG1 decreases microtubule dynamics, suggesting that CLoG1 plays a critical role in regulating microtubule dynamics. By discovering a novel gene critical for plant growth, our work demonstrates that P. patens is an excellent genetic system to study genes with a fundamental role in plant cell growth.
Assuntos
Bryopsida/genética , Microtúbulos/metabolismo , Mutação , Proteínas de Plantas/genética , Bryopsida/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/metabolismo , Interferência de RNA , Sequenciamento Completo do Genoma/métodosRESUMO
AIMS: To determine the theoretical framework that explains the mechanisms of the success of breathing exercise interventions in people with chronic obstructive pulmonary disease. DESIGN: A realist review. DATA SOURCES: Seven bibliographic databases and the grey literature were searched from 2015-January 2020 to identify the studies of breathing exercises. REVIEW METHODS: The evaluation criteria of realist review and the mixed method appraisal tool were both used to evaluate the included studies. We extracted and integrated the context-mechanism-outcome strings of each study to form the theoretical framework. RESULTS: Six theoretical mechanisms that affected the success of the intervention were articulated: Wide acceptance of training methods, Integration of the intervention with life, Self-management of the participants, Confidence in controlling symptoms, Participation and support of practitioners, Motivation for intervention. Conversely, the other two mechanisms including the gap between implementation and training and the duration of the intervention, had negative impacts on the implementation of breathing exercises. CONCLUSION: This review updates and expands the previous literature review on the impact of breathing exercises in people and provides researchers and clinical practitioners with theoretical mechanisms to ensure that the interventions achieve expected effects. IMPACT: When formulating or selecting breathing exercise interventions, our theoretical framework will guide researchers and clinical practitioners to ensure that the intervention will have practical effects.
Assuntos
Exercícios Respiratórios , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/terapiaRESUMO
Niclosamide, an antiparasitic, has been repositioned as a potential therapeutic drug for systemic diseases based on its antiviral, anticancer, and anti-infection properties. However, low bioavailability limits its in vivo efficacy. Our aim was to determine whether metabolic disposition by microsomal P450 enzymes in liver and intestine influences niclosamide's bioavailability in vivo, by comparing niclosamide metabolism in wild-type, liver-Cpr-null (LCN), and intestinal epithelium-Cpr-null (IECN) mice. In vitro stability of niclosamide in microsomal incubations was greater in the intestine than in liver in the presence of NADPH, but it was much greater in liver than in intestine in the presence of UDPGA. NADPH-dependent niclosamide metabolism and hydroxy-niclosamide formation were inhibited in hepatic microsomes of LCN mice, but not IECN mice, compared with wild-type mice. In intestinal microsomal reactions, hydroxy-niclosamide formation was not detected, but rates of niclosamide-glucuronide formation were â¼10-fold greater than in liver, in wild-type, LCN, and IECN mice. Apparent Km and V max values for microsomal niclosamide-glucuronide formation showed large differences between the two tissues, with the intestine having higher Km (0.47 µM) and higher V max (15.8) than the liver (0.09 µM and 0.75, respectively). In vivo studies in LCN mice confirmed the essential role of hepatic P450 in hydroxy-niclosamide formation; however, pharmacokinetic profiles of oral niclosamide were only minimally changed in LCN mice, compared with wild-type mice, and the changes seem to reflect the compensatory increase in hepatic UDP-glucuronosyltransferase activity. SIGNIFICANCE STATEMENT: These results suggest that efforts to increase the bioavailability of niclosamide by blocking its metabolism by P450 enzymes will unlikely be fruitful. In contrast, inhibition of niclosamide glucuronidation in both liver and intestine may prove effective for increasing niclosamide's bioavailability, thereby making it practical to repurpose this drug for treating systemic diseases.