Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Mol Med ; 11(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31040128

RESUMO

Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Multimerização Proteica , Proteostase , Animais , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Masculino , Camundongos , Mucoproteínas/genética , Proteínas Oncogênicas/genética
2.
J Crohns Colitis ; 11(4): 474-484, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702825

RESUMO

BACKGROUNDS AND AIMS: The effect of cigarette smoking [CS] is ambivalent since smoking improves ulcerative colitis [UC] while it worsens Crohn's disease [CD]. Although this clinical relationship between inflammatory bowel disease [IBD] and tobacco is well established, only a few experimental works have investigated the effect of smoking on the colonic barrier homeostasis focusing on xenobiotic detoxification genes. METHODS: A comprehensive and integrated comparative analysis of the global xenobiotic detoxification capacity of the normal colonic mucosa of healthy smokers [n = 8] and non-smokers [n = 9] versus the non-affected colonic mucosa of UC patients [n = 19] was performed by quantitative real-time polymerase chain reaction [qRT PCR]. The detoxification gene expression profile was analysed in CD patients [n = 18], in smoking UC patients [n = 5], and in biopsies from non-smoking UC patients cultured or not with cigarette smoke extract [n = 8]. RESULTS: Of the 244 detoxification genes investigated, 65 were dysregulated in UC patients in comparison with healthy controls or CD patients. The expression of ≥ 45/65 genes was inversed by CS in biopsies of smoking UC patients in remission and in colonic explants of UC patients exposed to cigarette smoke extract. We devised a network-based data analysis approach for differentially assessing changes in genetic interactions, allowing identification of unexpected regulatory detoxification genes that may play a major role in the beneficial effect of smoking on UC. CONCLUSIONS: Non-inflamed colonic mucosa in UC is characterised by a specifically altered detoxification gene network, which is partially restored by tobacco. These mucosal signatures could be useful for developing new therapeutic strategies and biomarkers of drug response in UC.


Assuntos
Colite Ulcerativa/metabolismo , Colo/efeitos dos fármacos , Expressão Gênica/genética , Inativação Metabólica/genética , Fumar/efeitos adversos , Adulto , Estudos de Casos e Controles , Colo/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Inativação Metabólica/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA