Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 14(5): 1379-87, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23514247

RESUMO

The main purpose of this work was to evaluate the transfection of novel DNA vectors, minicircles (mC), on embryonic stem cell-derived neural stem cells (NSC). We demonstrated that by combining microporation with mC, 75% of NSC expressing a transgene is achieved without compromising cell survival, morphology, and differentiation potential. When comparing mC with their plasmid DNA (pDNA) counterparts, both gave rise to similar transfection levels but cells harboring mC showed 10% higher cell viability, maintaining 90% of survival at least for 10 days. Long-term analysis showed that NSC harbor a higher number of mC copies and consequently exhibit higher transgene expression when compared to their pDNA counterpart. Taken together, our results offer the first insights on the use of mC as a novel and safe strategy to genetically engineer NSC envisaging their use as biopharmaceuticals in clinical settings for the treatment of neurodegenerative or neurological diseases.


Assuntos
DNA/genética , Eletroporação , Células-Tronco Neurais/metabolismo , Transfecção/métodos , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Variações do Número de Cópias de DNA , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Camundongos , Células-Tronco Neurais/citologia , Plasmídeos , Transfecção/instrumentação , Transgenes
2.
Biotechnol J ; 14(4): e1800461, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30320457

RESUMO

The development of bioprocesses capable of producing large numbers of human induced pluripotent stem cells (hiPSC) in a robust and safe manner is critical for the application of these cells in biotechnological and medical applications. Scalable expansion of hiPSC is often performed using polystyrene microcarriers, which have to be removed from the cell suspension using a separation step that causes loss of viable cells. In this study, application of novel xeno-free dissolvable microcarriers (DM) for an efficient and integrated expansion and harvesting of hiPSC is demonstrated. After an initial screening under static conditions, hiPSC culture using DM is performed in dynamic culture, using spinner-flasks. A maximum 4.0 ± 0.8-fold expansion is achieved after 5 days of culture. These results are validated with a second cell line and the culture is successfully adapted to fully xeno-free conditions. Afterwards, cell recovery is made within the spinner flask, being obtained a 92 ± 4% harvesting yield, which is significantly higher than the one obtained for the conventional filtration-based method (45 ± 3%). Importantly, the expanded and harvested hiPSC maintain their pluripotency and multilineage differentiation potential. The results here described represent a significant improvement of the downstream processing after microcarrier-based hiPSC expansion, leading to a more cost-effective and efficient bioprocess.


Assuntos
Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos
3.
J Chromatogr A ; 1082(2): 176-84, 2005 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16035359

RESUMO

The current study explores the possibility of using a polyethyleneglycol(PEG)-ammonium sulphate aqueous two-phase system (ATPS) as an early step in a process for the purification of a model 6.1 kbp plasmid DNA (pDNA) vector. Neutralised alkaline lysates were fed directly to ATPS. Conditions were selected to direct pDNA towards the salt-rich bottom phase, so that this stream could be subsequently processed by hydrophobic interaction chromatography (HIC). Screening of the best conditions for ATPS extraction was performed using three PEG molecular weights (300, 400 and 600) and varying the tie-line length, phase volume ratio and lysate load. For a 20% (w/w) lysate load, the best results were obtained with PEG 600 using the shortest tie-line (38.16%, w/w). By further manipulating the system composition along this tie-line in order to obtain a top/bottom phase volume ratio of 9.3 (35%, w/w PEG 600, 6%, w/w NH4)2 SO4), it was possible to recover 100% of pDNA in the bottom phase with a three-fold increase in concentration. Further increase in the lysate load up to 40% (w/w) with this system resulted in a eight-fold increase in pDNA concentration, but with a yield loss of 15%. The ATPS extraction was integrated with HIC and the overall process compared with a previously defined process that uses sequential precipitations with iso-propanol and ammonium sulphate prior to HIC. Although the final yield is lower in the ATPS-based process the purity grade of the final pDNA product is higher. This shows that it is possible to substitute the time-consuming two-step precipitation procedure by a simple ATPS extraction.


Assuntos
Cromatografia/métodos , DNA/isolamento & purificação , Vetores Genéticos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Plasmídeos/genética , Polietilenoglicóis
4.
Biotechnol Prog ; 27(5): 1421-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21793233

RESUMO

The aim of this study was to develop a robust, quality controlled and reproducible large-scale culture system using serum-free (SF) medium to obtain vast numbers of embryonic stem (ES) cells as a starting source for potential applications in tissue regeneration, as well as for drug screening studies. Mouse ES (mES) cells were firstly cultured on microcarriers in spinner flasks to investigate the effect of different parameters such as the agitation rate and the feeding regimen. Cells were successfully expanded at agitation rates up to 60 rpm using the SF medium and no significant differences in terms of growth kinetics or metabolic profiles were found between the two feeding regimens evaluated: 50% medium renewal every 24 h or 25% every 12 h. Overall, cells reached maximum concentrations of (4.2 ± 0.4) and (5.6 ± 0.8) ×10(6) cells/mL at Day 8 for cells fed once or twice per day; which corresponds to an increase in total cell number of 85 ± 7 and 108 ± 16, respectively. To have a more precise control over culture conditions and to yield a higher number of cells, the scale-up of the spinner flask culture system was successfully accomplished by using a fully controlled stirred tank bioreactor. In this case, the concentration of mES cells cultured on microcarriers increased 85 ± 15-fold over 11 days. Importantly, mES cells expanded under stirred conditions, in both spinner flask and fully controlled stirred tank bioreactor, using SF medium, retained the expression of pluripotency markers such as Oct-4, Nanog, and SSEA-1 and their differentiation potential into cells of the three embryonic germ layers.


Assuntos
Reatores Biológicos , Células-Tronco Embrionárias/citologia , Animais , Sequência de Bases , Ciclo Celular , Meios de Cultura , Primers do DNA , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA