RESUMO
Positron Emission Tomography (PET) is used in oncology for tumor diagnosis, commonly relying on fluorine-18 (18F) emission detection. The conventional method of 18F incorporation on to probes by covalent bonding is harsh for sensitive biomolecules, which are nonetheless compounds of choice for the development of targeted probes. This study explores gallium-18F (Ga18F) coordination, a milder alternative method occurring in aqueous media at the final stage of radiosyntheses. Pyclen-based chelating agents were proposed to capture (GaF) species at room temperature and pH ≥ 5 making the radiofluorination process compatible with heat- and acid-sensitive biomolecules. Highly promising results were obtained with the PC2A-based chelating agent LH2 derived from the new bifunctional PC2A-OAE-NCS compound. The solid-state structure of GaF(L) was elucidated by X-ray diffraction and revealed an unconventional heptacoordination of Ga(III). A high radiochemical conversion (RCC) of 86% was achieved at room temperature, in water at pH 5 within 20 minutes. Stability studies showed the robustness of the GaF(L) complex in aqueous media for at least one day and at least one hour for the radiolabeled analog Ga18F(L). These findings demonstrated that PC2A-based compounds are chelating agents of choice for (Ga18F) species, suggesting a real technological breakthrough for PET imaging and precision medicine.
RESUMO
Fluorine-18 (18 F) is the most favorable positron emitter for radiolabeling Positron Emission Tomography (PET) probes. However, conventional 18 F labeling through covalent C-F bond formation is challenging, involving multiple steps and stringent conditions unsuitable for sensitive biomolecular probes whose integrity may be altered. Over the past decade, an elegant new approach has been developed involving the coordination of an aluminum fluoride {Al18 F} species in aqueous media at a late-stage of the synthetic process. The objective of this study was to implement this method and to optimize radiolabeling efficiency using a Design of Experiments (DoE). To assess the impact of various experimental parameters on {Al18 F} incorporation, a pentadentate chelating agent NODA-MP-C4 was prepared as a model compound. This model carried a thiourea function present in the final conjugates resulting from the grafting of the chelating agent onto the probe. The formation of the radioactive complex Al18 F-NODA-MP-C4 was studied to achieve the highest radiochemical conversion. A complementary "cold" series study using the natural isotope 19 F was also conducted to guide the radiochemical operating conditions. Ultimately, Al18 F-NODA-MP-C4 was obtained with a reproducible and satisfactory radiochemical conversion of 79±3.5 % (n=5).
Assuntos
Compostos Heterocíclicos , Compostos Heterocíclicos/química , Quelantes/química , Piperidinas , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor/química , Marcação por Isótopo/métodosRESUMO
Magnetic resonance imaging (MRI) has a leading place in medicine as an imaging tool of high resolution for anatomical studies and diagnosis of diseases, in particular for soft tissues that cannot be accessible by other modalities. Many research works are thus focused on improving the images obtained with MRI. This technique has indeed poor sensitivity, which can be compensated by using a contrast agent (CA). Today, the clinically approved CAs on market are solely based on gadolinium complexes that may induce nephrogenic systemic fibrosis for patients with kidney failure, whereas more recent studies on healthy rats also showed Gd retention in the brain. Consequently, researchers try to elaborate other types of safer MRI CAs like manganese-based complexes. In this context, the synthesis of Mn2+ complexes of four 12-membered pyridine-containing macrocyclic ligands based on the pyclen core was accomplished and described herein. Then, the properties of these Mn(II) complexes were studied by two relaxometric methods, 17O NMR spectroscopy and 1H NMR dispersion profiles. The time of residence (τM) and the number of water molecules (q) present in the inner sphere of coordination were determined by these two experiments. The efficacy of the pyclen-based Mn(II) complexes as MRI CAs was evaluated by proton relaxometry at a magnetic field intensity of 1.41 T near those of most medical MRI scanners (1.5 T). Both the 17O NMR and the nuclear magnetic relaxation dispersion profiles indicated that the four hexadentate ligands prepared herein left one vacant coordination site to accommodate one water molecule, rapidly exchanging, in around 6 ns. Furthermore, it has been shown that the presence of an additional amide bond formed when the paramagnetic complex is conjugated to a molecule of interest does not alter the inner sphere of coordination of Mn, which remains monohydrated. These complexes exhibit r1 relaxivities, large enough to be used as clinical MRI CAs (1.7-3.4 mM-1·s-1, at 1.41 T and 37 °C).
Assuntos
Compostos Azabicíclicos/química , Meios de Contraste/química , Complexos de Coordenação/química , Compostos Azabicíclicos/síntese química , Meios de Contraste/síntese química , Complexos de Coordenação/síntese química , Ligantes , Imageamento por Ressonância Magnética , Manganês/química , Isótopos de Oxigênio/química , Estudo de Prova de Conceito , Espectroscopia de Prótons por Ressonância Magnética , Água/químicaRESUMO
Amorphadiene is a natural product involved in the biosynthesis of the antimalarial drug artemisinin. A convenient four-step synthesis of amorphadiene, starting from commercially available dihydroartemisinic acid, is reported. The targeted molecule is isolated with an overall yield of 85% on a multi-gram scale in four steps with only one chromatography.
RESUMO
Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources).
Assuntos
Quelantes/síntese química , Meios de Contraste/síntese química , Complexos de Coordenação/síntese química , Gadolínio/química , Animais , Inteligência Artificial , Ácidos Carboxílicos/química , Bases de Dados de Compostos Químicos , Humanos , Cinética , Ligantes , Imageamento por Ressonância Magnética/métodos , Poliaminas/química , Relação Quantitativa Estrutura-Atividade , TermodinâmicaRESUMO
Cardiovascular disease is the leading cause of mortality and morbidity worldwide. Atherosclerosis accounts for 50% of deaths in western countries. This multifactorial pathology is characterized by the accumulation of lipids and inflammatory cells within the vascular wall, leading to plaque formation. We describe herein the synthesis of a PCTA-based 68Ga3+ chelator coupled to a phospholipid biovector 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), which is the main constituent of the phospholipid moiety of High-Density Lipoprotein (HDL) phospholipid moiety. The resulting 68Ga-PCTA-DSPE inserted into HDL particles was compared to 18F-FDG as a PET agent to visualize atherosclerotic plaques. Our agent markedly accumulated within mouse atheromatous aortas and more interestingly in human endarterectomy carotid samples. These results support the potential use of 68Ga-PCTA-DSPE-HDL for atherosclerosis PET imaging.
Assuntos
Aterosclerose/diagnóstico por imagem , Quelantes/química , Radioisótopos de Gálio/química , Compostos Heterocíclicos com 2 Anéis/química , Fosfatidiletanolaminas/química , Compostos Radiofarmacêuticos/química , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/genética , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Quelantes/síntese química , Portadores de Fármacos/química , Desenvolvimento de Medicamentos , Compostos Heterocíclicos com 2 Anéis/síntese química , Humanos , Lipoproteínas HDL/química , Fígado/metabolismo , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Fosfatidiletanolaminas/síntese química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese químicaRESUMO
A constrained derivative of Gd-PCTA12, Gd-cyclo-PCTA12, in which one ethylene bridge connecting two nitrogen atoms of the triamine block is replaced by a cyclohexylene bridge, was synthesized and the impact of rigidification was studied by comparing the physicochemical and relaxometric properties of both gadolinium MRI contrast agents, Gd-PCTA12 and Gd-cyclo-PCTA12. The new complex has higher proton relaxivity than the parent compound (r(1) = 6.1 s(-1) mM(-1) at 20 MHz and 310 K). The rigidification of the PCTA12 scaffold proved to have no impact on the inertness towards transmetallation by endogenous ions such as Zn(2+). Moreover, for both contrast agents, the relaxivity was not quenched by endogenous anions. The oxygen-17 NMR study and the NMRD profile demonstrated that the rigidification of the PCTA scaffold had no impact on the electronic relaxation of Gd-cyclo-PCTA12. However, the rigidity of this complex induced an acceleration of the exchange rate of the inner-sphere water molecules as a result of steric crowding around the gadolinium ion. The value of tau(M) (310) thus approached the optimal value required to attain high relaxivity once the chelate is immobilized by covalent or non-covalent binding to macromolecules.
Assuntos
Gadolínio/química , Compostos Organometálicos/química , Meios de Contraste/síntese química , Meios de Contraste/química , Íons Pesados , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Compostos Organometálicos/síntese química , Solventes/química , Água/química , Zinco/química , Zinco/metabolismoRESUMO
We wish to report the synthesis and metal complexation properties of new radionuclide chelating agents for use in nuclear medicine. The strategy includes the facile preparation of rigid analogues of DTPA and TTHA possessing an aromatic ring. The aromatic structure used increased the stability of the complexes formed (pre-organization concept) and they are easily functionalised for attaching to any support. The poly(amino)poly(carboxylic) acids, Ph-DTPA (5a) and Ph-TTHA (5b) were obtained in five steps from phenylenediamine as the starting material with overall yields of 42 and 20%, respectively. The key step in this synthetic process is the preparation of tri- and tetra-amino compounds, 3a and 3b, respectively. In order to assess the ability of both ligands to complex with different metals ((111)In, (153)Sm, (90)Y, (177)Lu, (213)Bi, (225)Ac), along with their suitability for use in nuclear medicine, we used a number of complementary tests. We were able to demonstrate the high complexation capacity of Ph-DTPA (5a) with a broad range of radionuclides in a slightly acidic medium. In vitro stability studies show the high stability of Ph-DTPA with (111)In in human serum, a necessary condition for all medical applications. The protonation constant (log K(H)(i)) of Ph-DTPA (5a) was determined by potentiometric methods.