Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Exp Bot ; 75(8): 2545-2557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271585

RESUMO

Non-structural carbohydrates (NSCs) are building blocks for biomass and fuel metabolic processes. However, it remains unclear how tropical forests mobilize, export, and transport NSCs to cope with extreme droughts. We combined drought manipulation and ecosystem 13CO2 pulse-labeling in an enclosed rainforest at Biosphere 2, assessed changes in NSCs, and traced newly assimilated carbohydrates in plant species with diverse hydraulic traits and canopy positions. We show that drought caused a depletion of leaf starch reserves and slowed export and transport of newly assimilated carbohydrates below ground. Drought effects were more pronounced in conservative canopy trees with limited supply of new photosynthates and relatively constant water status than in those with continual photosynthetic supply and deteriorated water status. We provide experimental evidence that local utilization, export, and transport of newly assimilated carbon are closely coupled with plant water use in canopy trees. We highlight that these processes are critical for understanding and predicting tree resistance and ecosystem fluxes in tropical forest under drought.


Assuntos
Carbono , Floresta Úmida , Carbono/metabolismo , Ecossistema , Secas , Água/metabolismo , Árvores/metabolismo , Carboidratos , Folhas de Planta/metabolismo
2.
New Phytol ; 237(3): 780-792, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35986650

RESUMO

Root hairs and soil water content are crucial in controlling the release and diffusion of root exudates and shaping profiles of biochemical properties in the rhizosphere. But whether root hairs can offset the negative impacts of drought on microbial activity remains unknown. Soil zymography, 14 C imaging and neutron radiography were combined to identify how root hairs and soil moisture affect rhizosphere biochemical properties. To achieve this, we cultivated two maize genotypes (wild-type and root-hair-defective rth3 mutant) under ambient and drought conditions. Root hairs and optimal soil moisture increased hotspot area, rhizosphere extent and kinetic parameters (Vmax and Km ) of ß-glucosidase activities. Drought enlarged the rhizosphere extent of root exudates and water content. Colocalization analysis showed that enzymatic hotspots were more colocalized with root exudate hotspots under optimal moisture, whereas they showed higher dependency on water hotspots when soil water and carbon were scarce. We conclude that root hairs are essential in adapting rhizosphere properties under drought to maintain plant nutrition when a continuous mass flow of water transporting nutrients to the root is interrupted. In the rhizosphere, soil water was more important than root exudates for hydrolytic enzyme activities under water and carbon colimitation.


Assuntos
Secas , Rizosfera , Água/análise , Raízes de Plantas/genética , Solo/química , Carbono , Microbiologia do Solo
3.
Plant Cell Environ ; 45(10): 3122-3133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35909089

RESUMO

Consequences of interactions between ectomycorrhizal fungi (EcMF) and non-mycorrhizal rhizosphere fungi (NMRF) for plant carbon (C) allocation belowground and nutrient cycling in soil remain unknown. To address this topic, we performed a mesocosm study with Norway spruce seedlings [Picea abies (L.) H. Karst] inoculated with EcMF, NMRF, or a mixture of both (MIX). 14 CO2 pulse labelling of spruce was applied to trace and visualize the 14 C incorporation into roots, rhizohyphosphere and hyphosphere. Activities and localization of enzymes involved in the C, nitrogen (N) and phosphorus (P) cycling were visualized using zymography. Spruce seedlings inoculated with EcMF and NMRF allocated more C to soils (EcMF: 10.7%; NMRF: 3.5% of total recovered C) compared to uninoculated control seedlings. The 14 C activity in the hyphosphere was highest for EcMF and lowest for NMRF. In the presence of both, NMRF and EcMF (MIX), the 14 C activity was 64% lower compared with EcMF inoculation alone. This suggests a suppressed C allocation via EcMF likely due to the competition between EcMF and NMRF for N and P. Furthermore, we observed 57% and 49% higher chitinase and leucine-aminopeptidase activities in the rhizohyphosphere of EcMF compared to the uninoculated control, respectively. In contrast, ß-glucosidase activity (14.3 nmol cm-2 h-1 ) was highest in NMRF likely because NMRF consumed rhizodeposits efficiently. This was further supported by that enzyme stoichiometry in soil with EcMF shifted to a higher investment of nutrient acquisition enzymes (e.g., chitinase, leucine-aminopeptidase, acid phosphatase) compared to NMRF inoculation, where investment in ß-glucosidase increased. In conclusion, the alleviation of EcMF from C limitation promotes higher activities of enzymes involved in the N and P cycle to cover the nutrient demand of EcMF and host seedlings. In contrast, C limitation of NMRF probably led to a shift in investment towards higher activities of enzymes involved in the C cycle.


Assuntos
Abies , Celulases , Quitinases , Micorrizas , Picea , Pinus , Aminopeptidases/metabolismo , Quitinases/metabolismo , Fungos , Leucina/metabolismo , Micorrizas/metabolismo , Picea/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Plântula/metabolismo , Solo
4.
Glob Chang Biol ; 28(2): 654-664, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653297

RESUMO

The global methane (CH4 ) budget is based on a sensitive balance between methanogenesis and CH4 oxidation (aerobic and anaerobic). The response of these processes to climate warming, however, is not quantified. This largely reflects our lack of knowledge about the temperature sensitivity (Q10 ) of the anaerobic oxidation of CH4 (AOM)-a ubiquitous process in soils. Based on a 13 CH4 labeling experiment, we determined the rate, Q10 and activation energy of AOM and of methanogenesis in a paddy soil at three temperatures (5, 20, 35°C). The rates of AOM and of methanogenesis increased exponentially with temperature, whereby the AOM rate was significantly lower than methanogenesis. Both the activation energy and Q10 of AOM dropped significantly from 5-20 to 20-35°C, indicating that AOM is a highly temperature-dependent microbial process. Nonetheless, the Q10 of AOM and of methanogenesis were similar at 5-35°C, implying a comparable temperature dependence of AOM and methanogenesis in paddy soil. The continuous increase of AOM Q10 over the 28-day experiment reflects the successive utilization of electron acceptors according to their thermodynamic efficiency. The basic constant for Q10 of AOM was calculated to be 0.1 units for each 3.2 kJ mol-1 increase of activation energy. We estimate the AOM in paddy soils to consume 2.2~5.5 Tg CH4 per year on a global scale. Considering these results in conjunction with literature data, the terrestrial AOM in total consumes ~30% of overall CH4 production. Our data corroborate a similar Q10 of AOM and methanogenesis. As the rate of AOM in paddy soils is lower than methanogenesis, however, it will not fully compensate for an increased methane production under climate warming.


Assuntos
Metano , Solo , Anaerobiose , Aquecimento Global , Temperatura
5.
Environ Sci Technol ; 56(3): 2021-2032, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35048708

RESUMO

As direct mediators between plants and soil, roots play an important role in metabolic responses to environmental stresses such as drought, yet these responses are vastly uncharacterized on a plant-specific level, especially for co-occurring species. Here, we aim to examine the effects of drought on root metabolic profiles and carbon allocation pathways of three tropical rainforest species by combining cutting-edge metabolomic and imaging technologies in an in situ position-specific 13C-pyruvate root-labeling experiment. Further, washed (rhizosphere-depleted) and unwashed roots were examined to test the impact of microbial presence on root metabolic pathways. Drought had a species-specific impact on the metabolic profiles and spatial distribution in Piper sp. and Hibiscus rosa sinensis roots, signifying different defense mechanisms; Piper sp. enhanced root structural defense via recalcitrant compounds including lignin, while H. rosa sinensis enhanced biochemical defense via secretion of antioxidants and fatty acids. In contrast, Clitoria fairchildiana, a legume tree, was not influenced as much by drought but rather by rhizosphere presence where carbohydrate storage was enhanced, indicating a close association with symbiotic microbes. This study demonstrates how multiple techniques can be combined to identify how plants cope with drought through different drought-tolerance strategies and the consequences of such changes on below-ground organic matter composition.


Assuntos
Secas , Raízes de Plantas , Metabolômica , Raízes de Plantas/metabolismo , Plantas , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico
6.
Rapid Commun Mass Spectrom ; 33(8): 795-802, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30719792

RESUMO

RATIONALE: Many bacteria synthesize carbon (C) and energy storage compounds, including water-insoluble polyester lipids composed mainly or entirely of poly(3-hydroxybutyrate) (PHB). Despite the potential significance of C and energy storage for microbial life and C cycling, few measurements of PHB in soil have been reported. METHODS: A new protocol was implemented, based on an earlier sediment extraction and derivatization procedure, with quantification by gas chromatography/mass spectrometry (GC/MS) and 13 C-isotopic analysis by GC/combustion/isotope ratio mass spectrometry (GC/C/IRMS). RESULTS: The PHB content was 4.3 µg C g-1 in an agricultural soil and 1.2 µg C g-1 in a forest topsoil. This was an order of magnitude more PHB than obtained by the existing extraction method, suggesting that native PHB in soil has been previously underestimated. Addition of glucose increased the PHB content by 135% and 1,215% over 5 days, with the largest increase in the relatively nutrient-poor forest soil. In the agricultural soil, 68% of the increase was derived from added 13 C-labeled glucose, confirming synthesis of PHB from glucose for the first time in soil. CONCLUSIONS: The presence and responsiveness of PHB in both these contrasting soils show that PHB could provide a useful indicator of bacterial nutritional status and unbalanced growth. Microbial storage could be important to C and nutrient cycling and be a widespread strategy in the life of soil bacteria. The presented method offers new insight into the significance of this compound in soil.


Assuntos
Bactérias/metabolismo , Isótopos de Carbono/análise , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Microbiologia do Solo , Solo/química , Bactérias/química , Isótopos de Carbono/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Hidroxibutiratos/análise , Poliésteres/análise
7.
Rapid Commun Mass Spectrom ; 28(6): 569-76, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24519819

RESUMO

RATIONALE: Amino sugars build up microbial cell walls and are important components of soil organic matter. To evaluate their sources and turnover, δ(13)C analysis of soil-derived amino sugars by liquid chromatography was recently suggested. However, amino sugar δ(13)C determination remains challenging due to (1) a strong matrix effect, (2) CO2 -binding by alkaline eluents, and (3) strongly different chromatographic behavior and concentrations of basic and acidic amino sugars. To overcome these difficulties we established an ion chromatography-oxidation-isotope ratio mass spectrometry method to improve and facilitate soil amino sugar analysis. METHODS: After acid hydrolysis of soil samples, the extract was purified from salts and other components impeding chromatographic resolution. The amino sugar concentrations and δ(13)C values were determined by coupling an ion chromatograph to an isotope ratio mass spectrometer. The accuracy and precision of quantification and δ(13)C determination were assessed. RESULTS: Internal standards enabled correction for losses during analysis, with a relative standard deviation <6%. The higher magnitude peaks of basic than of acidic amino sugars required an amount-dependent correction of δ(13)C values. This correction improved the accuracy of the determination of δ(13)C values to <1.5‰ and the precision to <0.5‰ for basic and acidic amino sugars in a single run. CONCLUSIONS: This method enables parallel quantification and δ(13)C determination of basic and acidic amino sugars in a single chromatogram due to the advantages of coupling an ion chromatograph to the isotope ratio mass spectrometer. Small adjustments of sample amount and injection volume are necessary to optimize precision and accuracy for individual soils.


Assuntos
Amino Açúcares/química , Espectrometria de Massas/métodos , Solo/química , Isótopos de Carbono/química , Limite de Detecção , Modelos Lineares , Oxirredução , Reprodutibilidade dos Testes
8.
Sci Total Environ ; 918: 170738, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325444

RESUMO

Microbial acquisition and utilization of organic and mineral phosphorus (P) sources in paddy soils are strongly dependent on redox environment and remain the key to understand P turnover and allocation for cell compound synthesis. Using double 32/33P labeling, we traced the P from three sources in a P-limited paddy soil: ferric iron-bound phosphate (Fe-P), wheat straw P (Straw-P), and soil P (Soil-P) in microbial biomass P (MBP) and phospholipids (Phospholipid-P) of individual microbial groups depending on water regimes: (i) continuous flooding or (ii) alternate wetting and drying. 32/33P labeling combined with phospholipid fatty acid analysis allowed to trace P utilization by functional microbial groups. Microbial P nutrition was mainly covered by Soil-P, whereas microorganisms preferred to take up P from mineralized Straw-P than from Fe-P dissolution. The main Straw-P mobilizing agents were Actinobacteria under alternating wetting and drying and other Gram-positive bacteria under continuous flooding. Actinobacteria and arbuscular mycorrhiza increased P incorporation into cell membranes by 1.4-5.8 times under alternate wetting and drying compared to continuous flooding. The Fe-P contribution to MBP was 4-5 times larger in bulk than in rooted soil because (i) rice roots outcompeted microorganisms for P uptake from Fe-P and (ii) rhizodeposits stimulated microbial activity, e.g. phosphomonoesterase production and Straw-P mineralization. Higher phosphomonoesterase activities during slow soil drying compensated for the decreased reductive dissolution of Fe-P. Concluding, microbial P acquisition strategies depend on (i) Soil-P, especially organic P, availability, (ii) the activity of phosphomonoesterases produced by microorganisms and roots, and (iii) P sources - all of which depend on the redox conditions. Maximizing legacy P utilization in the soil as a function of the water regime is one potential way to reduce competition between roots and microbes for P in rice cultivation.


Assuntos
Oryza , Poluentes do Solo , Oryza/metabolismo , Fósforo/análise , Água/análise , Solo , Fosfolipídeos , Ferro/análise , Bactérias/metabolismo , Monoéster Fosfórico Hidrolases , Poluentes do Solo/análise
9.
Sci Total Environ ; 854: 158709, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126705

RESUMO

Microorganisms govern soil nutrient cycling. It is therefore critical to understand their responses to human-induced increases in N and P inputs. We investigated microbial community composition, biomass, functional gene abundance, and enzyme activities in response to 10-year N and P addition in a primary tropical montane forest, and we explored the drivers behind these effects. Fungi were more sensitive to nutrient addition than bacteria, and the fungal community shift was mainly driven by P availability. N addition aggravated P limitation, to which microbes responded by increasing the abundance of P cycling functional genes and phosphatase activity. In contrast, P addition alleviated P deficiency, and thus P cycling functional gene abundance and phosphatase activity decreased. The shift of microbial community composition, changes in functional genes involved in P cycling, and phosphatase activity were mainly driven by P addition, which also induced the alteration of soil stoichiometry (C/P and N/P). Eliminating P deficiency through fertilization accelerated C cycling by increasing the activity of C degradation enzymes. The abundances of C and P functional genes were positively correlated, indicating the intensive coupling of C and P cycling in P-limited forest soil. In summary, a long-term fertilization experiment demonstrated that soil microorganisms could adapt to induced environmental changes in soil nutrient stoichiometry, not only through shifts of microbial community composition and functional gene abundances, but also through the regulation of enzyme production. The response of the microbial community to N and P imbalance and effects of the microbial community on soil nutrient cycling should be incorporated into the ecosystem biogeochemical model.


Assuntos
Microbiota , Nitrogênio , Humanos , Nitrogênio/análise , Solo/química , Fósforo/metabolismo , Microbiologia do Solo , Florestas , Fertilização , Monoéster Fosfórico Hidrolases , Carbono/metabolismo
10.
Sci Total Environ ; 893: 164550, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295529

RESUMO

Grassland management practices vary in stocking rates and plant removal strategies (grazing versus mowing). They influence organic matter (OM) inputs, which were postulated as main controls of soil organic carbon (SOC) sequestration and might therefore control SOC stabilization. The aim of this study was to test this hypothesis by investigating the impacts of grassland harvesting regimes on parameters related to soil microbial functioning and soil organic matter (SOM) formation processes. We used a thirteen-year experiment in Central France under contrasting management (unmanaged, grazing with two intensities, mowing, bare fallow) to establish a carbon input gradient based on biomass leftovers after harvest. We investigated microbial biomass, basal respiration and enzyme activities as indicators of microbial functioning, and amino sugar content and composition as indicator of persistent SOM formation and origin through necromass accumulation. Responses of these parameters to carbon input along the gradient were contrasting and in most cases unrelated. Only the microbial C/N ratio and amino sugar contents showed a linear response indicating that they are influenced by plant-derived OM input. Other parameters were most probably more influenced by root activity, presence of herbivores, and/or physicochemical changes following management activities impacting soil microbial functioning. Grassland harvesting strategies influence SOC sequestration not only by changing carbon input quantity, but also through their effects on belowground processes possibly related to changing carbon input types and physiochemical soil properties.


Assuntos
Pradaria , Solo , Biomassa , Solo/química , Carbono/química , Herbivoria , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA