RESUMO
BACKGROUND: Denileukin diftitox (ONTAK) is a diphtheria/IL-2R fusion protein able to deplete regulatory T cells in peripheral blood. Regulatory T cells in the local immune microenvironment have been shown to be associated with poor prognosis in ovarian cancer. This study examined whether denileukin diftitox (ONTAK) could be safely administered intraperitoneal in patients with advanced refractory ovarian cancer and assessed its effects on regulatory T cells and tumor associated cytokines in ascites and peripheral blood. PATIENTS AND METHODS: A phase I dose escalation study of intraperitoneal denileukin diftitox (ONTAK) enrolled 10 patients with advanced, refractory ovarian carcinoma at 3 doses (5 µg/kg, 15 µg/kg, and 25 µg/kg). Serial CA-125 measurements assessed clinical response. Regulatory T cells were quantified using RT-PCR and cytokine levels measured by Luminex. RESULTS: The maximum tolerated dose was 15 µg/kg with a dose limiting toxicity observed in 1 out of 6 patients in the expansion group. The majority of adverse events were transient grades 1-2. One patient treated at the 25 µg/kg dose experienced cytokine storm with prolonged hospitalization. 3 patients had decreases in CA-125 after treatment but none met criteria for partial response. Treatment with denileukin diftitox (ONTAK) decreased regulatory T cells in peripheral blood and ascites. Treated patients did not show any significant changes in IL-8, TGF-ß, sIL2Ra in ascites or peripheral blood. CONCLUSIONS: Denileukin diftitox (ONTAK) can be safely administered intraperitoneally to recurrent refractory ovarian cancer patients. Regulatory T cells were reduced in ascites and peripheral blood, but there were no significant changes in cytokine levels. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov # NCT00357448.
RESUMO
Colorectal cancer (CRC) is one of the most common cancers worldwide, and a leading cause of cancer deaths. Better classifying multicategory outcomes of CRC with clinical and omic data may help adjust treatment regimens based on individual's risk. Here, we selected the features that were useful for classifying four-category survival outcome of CRC using the clinical and transcriptomic data, or clinical, transcriptomic, microsatellite instability and selected oncogenic-driver data (all data) of TCGA. We also optimized multimetric feature selection to develop the best multinomial logistic regression (MLR) and random forest (RF) models that had the highest accuracy, precision, recall and F1 score, respectively. We identified 2073 differentially expressed genes of the TCGA RNASeq dataset. MLR overall outperformed RF in the multimetric feature selection. In both RF and MLR models, precision, recall and F1 score increased as the feature number increased and peaked at the feature number of 600-1000, while the models' accuracy remained stable. The best model was the MLR one with 825 features based on sum of squared coefficients using all data, and attained the best accuracy of 0.855, F1 of 0.738 and precision of 0.832, which were higher than those using clinical and transcriptomic data. The top-ranked features in the MLR model of the best performance using clinical and transcriptomic data were different from those using all data. However, pathologic staging, HBS1L, TSPYL4, and TP53TG3B were the overlapping top-20 ranked features in the best models using clinical and transcriptomic, or all data. Thus, we developed a multimetric feature-selection based MLR model that outperformed RF models in classifying four-category outcome of CRC patients. Interestingly, adding microsatellite instability and oncogenic-driver data to clinical and transcriptomic data improved models' performances. Precision and recall of tuned algorithms may change significantly as the feature number changes, but accuracy appears not sensitive to these changes.
Assuntos
Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Avaliação de Resultados em Cuidados de Saúde/métodos , Adulto , Idoso , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Feminino , Humanos , Modelos Logísticos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Oncogenes/genética , Avaliação de Resultados em Cuidados de Saúde/classificação , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , RNA-Seq/métodos , Reprodutibilidade dos TestesRESUMO
Breast cancer is immunogenic and a variety of vaccines have been designed to boost immunity directed against the disease. The components of a breast cancer vaccine, the antigen, the delivery system, and the adjuvant, can have a significant impact on vaccine immunogenicity. There have been numerous immunogenic proteins identified in all subtypes of breast cancer. The majority of these antigens are weakly immunogenic nonmutated tumor-associated proteins. Mutated proteins and neoantigen epitopes are found only in a small minority of patients and are enriched in the triple negative subtype. Several vaccines have advanced to large randomized Phase II or Phase III clinical trials. None of these trials met their primary endpoint of either progression-free or overall survival. Despite these set-backs investigators have learned important lessons regarding the clinical application of breast cancer vaccines from the type of immune response needed for tumor eradication, Type I T-cell immunity, to the patient populations most likely to benefit from vaccination. Many therapeutic breast cancer vaccines are now being tested in combination with other forms of immune therapy or chemotherapy and radiation. Breast cancer vaccines as single agents are now studied in the context of the prevention of relapse or development of disease. Newer approaches are designing vaccines to prevent breast cancer by intercepting high-risk lesions such as ductal carcinoma in situ to limit the progression of these tumors to invasive cancer. There are also several efforts to develop vaccines for the primary prevention of breast cancer by targeting antigens expressed during breast cancer initiation.
Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Neoplasias da Mama/prevenção & controle , Ensaios Clínicos Fase II como Assunto , Epitopos , Feminino , Humanos , Recidiva Local de Neoplasia , Ensaios Clínicos Controlados Aleatórios como Assunto , Linfócitos TRESUMO
Personalized medicine in oncology utilizes evidence derived from genetic, immune, and proteomic profiling to inform therapeutic options as well as provide prognostic information for each unique individual and their tumor. Our ability to biologically and immunologically define each patient's tumor has been driven by the development of assays characterizing the genomic and proteomic profiles of tumors that in turn have led to the development of large biologic databases and computational tools for the analysis of these large data sets. In Immuno-oncology, the introduction of checkpoint inhibitors and their approval across multiple tumor types has led to the recognition that the majority of patients will not clinically respond to these therapies but will remain at risk for the development of significant immunologic side effects. This challenge highlights the need for the development and validation of both predictive biomarkers for response to such therapies as well as biomarkers prognostic of disease course. Despite extensive investigation into predictive biomarkers using these biologic databases and computational methods, only recently has progress been made in this area. This progress is the first step allowing us to identify patients likely to benefit from these therapies and moving our field closer to a truly personalized approach to the use of immune therapies in oncology.
Assuntos
Neoplasias , Medicina de Precisão , Biomarcadores Tumorais , Humanos , Oncologia/tendências , Neoplasias/imunologia , Neoplasias/terapia , Medicina de Precisão/tendências , ProteômicaRESUMO
Prevention is an essential component of cancer eradication. Next-generation sequencing of cancer genomes and epigenomes has defined large numbers of driver mutations and molecular subgroups, leading to therapeutic advances. By comparison, there is a relative paucity of such knowledge in premalignant neoplasia, which inherently limits the potential to develop precision prevention strategies. Studies on the interplay between germ-line and somatic events have elucidated genetic processes underlying premalignant progression and preventive targets. Emerging data hint at the immune system's ability to intercept premalignancy and prevent cancer. Genetically engineered mouse models have identified mechanisms by which genetic drivers and other somatic alterations recruit inflammatory cells and induce changes in normal cells to create and interact with the premalignant tumor microenvironment to promote oncogenesis and immune evasion. These studies are currently limited to only a few lesion types and patients. In this Perspective, we advocate a large-scale collaborative effort to systematically map the biology of premalignancy and the surrounding cellular response. By bringing together scientists from diverse disciplines (e.g., biochemistry, omics, and computational biology; microbiology, immunology, and medical genetics; engineering, imaging, and synthetic chemistry; and implementation science), we can drive a concerted effort focused on cancer vaccines to reprogram the immune response to prevent, detect, and reject premalignancy. Lynch syndrome, clonal hematopoiesis, and cervical intraepithelial neoplasia which also serve as models for inherited syndromes, blood, and viral premalignancies, are ideal scenarios in which to launch this initiative.
Assuntos
Neoplasias/imunologia , Neoplasias/prevenção & controle , Lesões Pré-Cancerosas/patologia , Células Germinativas/metabolismo , Humanos , Sistema Imunitário/patologia , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Microambiente TumoralRESUMO
Recent advances have permitted successful therapeutic targeting of the immune system in head and neck squamous cell carcinoma (HNSCC). These new immunotherapeutic targets and agents are being rapidly adopted by the oncologic community and hold considerable promise. The National Cancer Institute sponsored a Clinical Trials Planning Meeting to address the issue of how to further investigate the use of immunotherapy in patients with HNSCC. The goals of the meeting were to consider phase 2 or 3 trial designs primarily in 3 different patient populations: those with previously untreated, human papillomavirus-initiated oropharyngeal cancers; those with previously untreated, human papillomavirus-negative HNSCC; and those with recurrent/metastatic HNSCC. In addition, a separate committee was formed to develop integrative biomarkers for the clinical trials. The meeting started with an overview of key immune components and principles related to HNSCC, including immunosurveillance and immune escape. Four clinical trial concepts were developed at the meeting integrating different immunotherapies with existing standards of care. These designs were presented for implementation by the head and neck committees of the National Cancer Institute-funded National Clinical Trials Network. This article summarizes the proceedings of this Clinical Trials Planning Meeting, the purpose of which was to facilitate the rigorous development and design of randomized phase 2 and 3 immunotherapeutic trials in patients with HNSCC. Although reviews usually are published immediately after the meeting is held, this report is unique because there are now tangible clinical trial designs that have been funded and put into practice and the studies are being activated to accrual. Cancer 2017;123:1259-1271. © 2016 American Cancer Society.
Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Ensaios Clínicos como Assunto , Terapia Combinada , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Terapia de Alvo Molecular , National Cancer Institute (U.S.) , Estadiamento de Neoplasias , Seleção de Pacientes , Resultado do Tratamento , Estados UnidosRESUMO
BACKGROUND: Granulocyte macrophage colony-stimulating factor (GM-CSF) stimulates immunity via recruitment of antigen presenting cells and tumor specific T-cell stimulation. Albumin-bound paclitaxel (nab-paclitaxel) followed by GM-CSF may enhance antitumor responses and prolong remissions in ovarian cancer. Immune phenotypes present before treatment may identify responders to chemo-immunotherapy. METHODS: Recurrent platinum-resistant ovarian, peritoneal, or fallopian tube cancer patients received nab-paclitaxel, 100mg/m2 days 1, 8, 15 followed by GM-CSF 250µg days 16-26 every 28days for 6 planned cycles. The primary endpoint was remission duration compared to immediate prior remission. Peripheral blood was evaluated by flow cytometry and interferon-γ ELISPOT. RESULTS: Twenty-one patients were enrolled. Six patients (29%) achieved a biochemical complete response and 9 (43%) a partial response for an overall response rate of 72%. Median time to progression was 4months and 10% of patients achieved longer remissions than the immediate prior regimen. Median overall survival (OS) was 16.8months. Fewer myeloid derived suppressor cells (MDSC) at enrollment significantly associated with complete response (p=0.05). T-cell responses to IGF1R-p1332-1346 (r=0.827, p=0.0003) and IGF1R-p1242-1256 (r=0.850, p=0.0001) during treatment correlated with time to progression. CONCLUSIONS: Nab-paclitaxel combined with GM-CSF demonstrated biochemical responses in a majority of patients, although responses were not sustained. This combination did not demonstrate an advantage in OS over prior studies of nab-paclitaxel monotherapy. Agents that modulate MDSC should be studied as potential adjuvants to therapy. Strategies to expand T cells recognizing tumor-associated antigens biologically significant in ovarian cancer should also continue to be investigated.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Humanos , Fatores Imunológicos/administração & dosagem , Pessoa de Meia-Idade , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagemRESUMO
This Phase I dose-escalation study (NCT00058526) assessed the safety and immunogenicity of an anti-cancer immunotherapeutic (recombinant HER2 protein (dHER2) combined with the immunostimulant AS15) in patients with early-stage HER2-overexpressing breast cancer (BC). Sixty-one trastuzumab-naive patients with stage II-III HER2-positive BC received the dHER2 immunotherapeutic after surgical resection and adjuvant therapy. They were allocated into four cohorts receiving different doses of dHER2 (20, 100, 500 µg) combined with a fixed AS15 dose. Safety and immunogenicity (dHER2-specific antibody responses) were assessed. After completing the immunization schedule (three or six doses over 14 weeks) and a six-month follow-up, the patients were followed for 5 years for late toxicity, long-term immunogenicity, and clinical status. The immunizations were well tolerated, and increasing doses of dHER2 had no impact on the frequency or severity of adverse events. Few late toxicities were reported, and after 5 years 45/54 patients (83.3 %) were still alive, while 28/45 (62 %) with known disease status were disease free. Regarding the immunogenicity of the compound, a positive association was found between the dHER2 dose, the immunization schedule, and the prevalence of dHER2-specific humoral responses. Among the patients receiving the most intense immunization schedule with the highest dHER2 dose, 6/8 maintained their dHER2-specific antibody response 5 years after immunization. The dHER2 immunotherapeutic had an acceptable safety profile in early HER2-positive BC patients. dHER2-specific antibody responses were induced, with the rate of responders increasing with the dHER2 dose and the number and frequency of immunizations.
Assuntos
Neoplasias da Mama/terapia , Fatores Imunológicos/administração & dosagem , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/administração & dosagem , Regulação para Cima , Adulto , Idoso , Neoplasias da Mama/metabolismo , Relação Dose-Resposta a Droga , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores Imunológicos/efeitos adversos , Imunoterapia , Pessoa de Meia-Idade , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Resultado do TratamentoRESUMO
The ability to prevent disease is the holy grail of medicine. For decades, efforts have been made to extend the successes seen with vaccination against infectious diseases to cancer. In some instances, preventive vaccination against viruses (prototypically HPV) has successfully prevented tumorigenesis and will make a major impact on public health in the decades to come. However, the majority of cancers that arise are a result of genetic mutation within the host, or non-viral environmental exposures. We present compelling evidence that vaccination against an overexpressed self-tumor oncoprotein has the potential to prevent tumor development. Vaccination against the Epidermal Growth Factor Receptor (EGFR) using a multipeptide vaccine in a preventive setting decreased EGFR-driven lung carcinogenesis by 76.4% in a mouse model of EGFR-driven lung cancer. We also demonstrate that anti-EGFR vaccination primes the development of a robust immune response in vivo. This study provides proof of concept for the first time that targeting tumor drivers in a preventive setting in lung cancer using peptide vaccination can inhibit tumorigenesis and may provide useful clinical insights into the development of strategies to vaccinate against EGFR in populations where EGFR-mutant disease is highly prevalent. © 2015 Wiley Periodicals, Inc.
Assuntos
Vacinas Anticâncer/administração & dosagem , Receptores ErbB/genética , Neoplasias Pulmonares/prevenção & controle , Peptídeos/administração & dosagem , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Receptores ErbB/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Transgênicos , Mutação , Peptídeos/uso terapêutico , Vacinação/métodosRESUMO
This phase I study evaluated the feasibility of expanding HER-2/neu (HER2) vaccine-primed peripheral blood T-cells ex vivo and assessed the safety of T-cell infusions. Eight patients with HER2(+) treatment refractory metastatic cancers were enrolled. T-cells could be expanded to predefined parameters in seven patients (88%). Ninety-two percent of adverse events were grade 1 or 2. Three of seven patients developed infusion-related inflammatory reactions at their disease sites. HER2-specific T-cells significantly increased in vivo compared to pre-infusion levels (p = 0.010) and persisted in 4/6 patients (66%) over 70 days after the first infusion. Partial clinical responses were observed in 43% of patients. Levels of T-regulatory cells in peripheral blood prior to infusion (p < 0.001), the level of HER2-specific T-cells in vivo (p = 0.030), and development of diverse clonal T-cell populations (p < 0.001) were associated with response. The generation of HER2 vaccine-primed autologous T-cells for therapeutic infusion is feasible and well tolerated. This approach provides a foundation for the application of T-cell therapy to additional solid tumor types.
Assuntos
Transferência Adotiva/métodos , Vacinas Anticâncer/uso terapêutico , Neoplasias/terapia , Receptor ErbB-2/imunologia , Linfócitos T/imunologia , Transferência Adotiva/efeitos adversos , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estadiamento de NeoplasiasRESUMO
Recent studies in patients with breast cancer suggest the immune microenvironment influences response to therapy. We aimed to evaluate the relationship between growth rates of tumors in common spontaneous mammary tumor models and immune biomarkers evaluated in the tumor and blood. TgMMTV-neu and C3(1)-Tag transgenic mice were followed longitudinally from birth, and MPA-DMBA-treated mice from the time of carcinogen administration, for the development of mammary tumors. Tumor-infiltrating CD4(+) and CD8(+) T-cells, FOXP3(+) T-regulatory cells, and myeloid-derived suppressor cells were assessed by flow cytometry. Serum cytokines were evaluated in subsets of mice. Fine needle aspirates of tumors were collected and RNA was isolated to determine levels of immune and proliferation markers. Age of tumor onset and kinetics of tumor growth were significantly different among the models. Mammary tumors from TgMMTV-neu contained a lower CD8/CD4 ratio than that of other models (p < 0.05). MPA-DMBA-induced tumors contained a higher percentage of FOXP3(+) CD4(+) T-cells (p < 0.01) and MDSC (p < 0.001) compared with the other models. Individuals with significantly slower tumor growth demonstrated higher levels of Type I serum cytokines prior to the development of lesions compared to those with rapid tumor growth. Moreover, the tumors of animals with more rapid tumor growth demonstrated a significant increase in the expression of genes associated with Type II immunity than those with slower-progressing tumors. These data provide a foundation for the development of in vivo models to explore the relationship between endogenous immunity and response to standard therapies for breast cancer.
Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias da Mama/imunologia , Imunomodulação , Neoplasias Mamárias Animais/genética , Animais , Biomarcadores Tumorais/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Proliferação de Células/genética , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , CamundongosRESUMO
ErbB-2 has been implicated as a target for cancer-initiating cells in breast and other cancers. ErbB-2-directed peptide vaccines have been shown to be effective in prevention of spontaneous tumorigenesis of breast in neu transgenic mouse model, and cellular immunity is proposed as a mechanism for the anti-tumor efficacy. However, there has been no explanation as to how immunity suppresses tumorigenesis from the early stage carcinogenesis, when ErbB-2 expression in breast is low. Here, we investigated a peptide-based vaccine, which consists of two MHC class II epitopes derived from murine ErbB-2, to prevent the occurrence of spontaneous tumors in breast and assess immune impact on breast cancer stem cells. Female MMTV-PyMT transgenic mice were immunized with either ErbB-2 peptide vaccine, or a peptide from tetanus toxoid, or PBS in immune adjuvant. ErbB-2 peptides vaccine completely suppressed spontaneous breast tumors, and the efficacy was correlated with antigen-specific T-cell and antibody responses. In addition, immune serum from the mice of ErbB-2 vaccine group had an inhibitory effect on mammosphere-forming capacity and signaling through ErbB-2 and downstream Akt pathway in ErbB-2 overexpressing mouse mammary cancer cells. We provide evidence that multi-epitope class II peptides vaccine suppresses tumorigenesis of breast potentially by inhibiting the growth of cancer stem cells. We also suggest that a strategy of inducing strong immune responses using multi-epitope ErbB-2-directed helper vaccine might be useful in preventing breast cancer recurrence.
Assuntos
Vacinas Anticâncer/uso terapêutico , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/prevenção & controle , Vírus do Tumor Mamário do Camundongo/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor ErbB-2/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Animais , Western Blotting , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Imunoprecipitação , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Células Tumorais Cultivadas , VacinaçãoRESUMO
BACKGROUND: The use of autoantibodies for the early detection of breast cancer has generated much interest as antibodies can be readily assayed in serum when antigen levels are low. Ideally, diagnostic autoantibodies would be identified in individuals who harbored pre-invasive disease/high risk lesions leading to malignancy. Prospectively collected human serum samples from these individuals are rare and not often available for biomarker discovery. We questioned whether transgenic animals could be used to identify cancer-associated autoantibodies present at the earliest stages of the malignant transformation of breast cancer. METHODS: We collected sera from transgenic mice (TgMMTV-neu) from the time of birth to death by spontaneous mammary tumors. Using sera from a time point prior to the development of tumor, i.e. "pre-diagnostic", we probed cDNA libraries derived from syngeneic tumors to identify proteins recognized by IgG antibodies. Once antigens were identified, selected proteins were evaluated via protein arrays, for autoantibody responses using plasma from women obtained prior to the development of breast cancer and matched controls. The ability of the antigens to discriminate cases from controls was assessed using receiver-operating-characteristic curve analyses and estimates of the area under the curve. RESULTS: We identified 6 autoantibodies that were present in mice prior to the development of mammary cancer: Pdhx, Otud6b, Stk39, Zpf238, Lgals8, and Vps35. In rodent validation cohorts, detecting both IgM and IgG antibody responses against a subset of the identified proteins could discriminate pre-diagnostic sera from non-transgenic control sera with an AUC of 0.924. IgG and IgM autoantibodies, specific for a subset of the identified antigens, could discriminate the samples of women who eventually developed breast cancer from case-matched controls who did not develop disease. The discriminatory potential of the pre-diagnostic autoantibodies was enhanced if plasma samples were collected greater than 5 months prior to a breast cancer diagnosis (AUC 0.68; CI 0.565-0.787, p=0.0025). CONCLUSION: Genetically engineered mouse models of cancer may provide a facile discovery tool for identifying autoantibodies useful for human cancer diagnostics.
Assuntos
Autoanticorpos/imunologia , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/diagnóstico , Genes erbB-2 , Animais , Diagnóstico Precoce , Feminino , Humanos , Camundongos , Camundongos TransgênicosRESUMO
High-throughput proteomics has become an exciting field and a potential frontier of modern medicine since the early 2000s. While significant progress has been made in the technical aspects of the field, translating proteomics to clinical applications has been challenging. This review summarizes recent advances in clinical applications of high-throughput proteomics and discusses the associated challenges, advantages, and future directions. We focus on research progress and clinical applications of high-throughput proteomics in breast cancer, bladder cancer, laryngeal squamous cell carcinoma, gastric cancer, colorectal cancer, and coronavirus disease 2019. The future application of high-throughput proteomics will face challenges such as varying protein properties, limitations of statistical modeling, technical and logistical difficulties in data deposition, integration, and harmonization, as well as regulatory requirements for clinical validation and considerations. However, there are several noteworthy advantages of high-throughput proteomics, including the identification of novel global protein networks, the discovery of new proteins, and the synergistic incorporation with other omic data. We look forward to participating in and embracing future advances in high-throughput proteomics, such as proteomics-based single-cell biology and its clinical applications, individualized proteomics, pathology informatics, digital pathology, and deep learning models for high-throughput proteomics. Several new proteomic technologies are noteworthy, including data-independent acquisition mass spectrometry, nanopore-based proteomics, 4-D proteomics, and secondary ion mass spectrometry. In summary, we believe high-throughput proteomics will drastically shift the paradigm of translational research, clinical practice, and public health in the near future.
RESUMO
In breast cancer, triple negative (TN) breast cancer has most responses to immune checkpoint inhibitor (ICI) therapy. Lymphocyte infiltrate does not impact prognosis in Hormone receptor positive HER2 negative (HR + HER2-) breast tumors and few HR + HER2- tumors respond to ICI. We contrasted immune-associated gene expression between 119 TN and 475 HR + HER2- breast tumors from The Cancer Genome Atlas (TCGA) and confirmed our findings in 299 TN and 1369 HR + HER2- breast tumors in the METABRIC database. TN and HR+ HER2- tumors grouped into immune-high or -low tumors, both subtypes were represented in the immune-high group. The largest difference between the immune-high TN and HR + HER2- tumors was TN tumors had more abundant Th1 and Th2 CD4+ T cells while HR + HER2- tumors had more abundant fibroblasts (log2FC > 0.3; p < 10×10-10). This suggests an immune-high signature is not dictated by breast cancer subtype, but fibroblast subsets associated with worse outcome were higher in the immune-high HR + HER2- tumors.
RESUMO
Polysaccharide K (PSK) is a widely used mushroom extract that has shown anti-tumor and immunomodulatory effects in both preclinical and clinical studies. Therefore, it is important to understand the mechanism of actions of PSK. We recently reported that PSK can activate toll-like receptor 2 and enhances the function of NK cells. The current study was undertaken to study the effect of PSK on gamma delta (γδ) T cells, another important arm of the innate immunity. In vitro experiments using mouse splenocytes showed that γδ T cells produce IFN-γ after treatment with PSK and have up-regulated expression of CD25, CD69, and CD107a. To investigate whether the effect of PSK on γδ T cells is direct or indirect, purified γδ T cells were cultured either alone or together with bone marrow-derived DC in a co-culture or trans-well system and then stimulated with PSK. Results showed that direct cell-to-cell contact between γδ T cells and DC is required for optimal activation of γδ T cells. There was also reciprocal activation of DC by PSK-activated γδ T cells, as demonstrated by higher expression of costimulatory molecules and enhanced production of IL-12 by DC in the presence of γδ T cells. PSK can also co-stimulate γδ T cells with anti-TCR and anti-CD3 stimulation, in the absence of DC. Finally, in vivo treatment with PSK activates γδ T cells among the tumor infiltrating lymphocytes, and depleting γδ T cells during PSK treatment attenuated the anti-tumor effect of PSK. All together, these results demonstrated that γδ T cells are activated by PSK and contribute to the anti-tumor effect of PSK.