Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Dis Aquat Organ ; 134(3): 209-213, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31120038

RESUMO

An immature killer whale Orcinus orca found dead on the southeastern Brazilian coast had multiple bone proliferations: on the skull, vertebrae, hemal arches, and ribs. The bony formations were characterized as multiple osteochondromas, as defined by osteochondromatosis. The diagnosis was based on macroscopic and radiographic observations. These benign osseocartilaginous tumors affect young individuals and grow until skeletal maturity is achieved. Case reports of this condition, besides humans, include other mammals, with most reports for pets and domestic mammals such as cattle, and a report in a fossil canid (Hesperocyon) from the Oligocene. The etiology, diagnosis, developmental characteristics, and occurrence of osteochondromas are distinct among different species. This report describes the first case of multiple osteochondromas in a wild cetacean.


Assuntos
Exostose Múltipla Hereditária , Osteocondromatose , Orca , Animais , Brasil , Bovinos , Exostose Múltipla Hereditária/veterinária , Osteocondromatose/veterinária
2.
Proc Natl Acad Sci U S A ; 111(19): 7036-41, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778215

RESUMO

Populations of large wildlife are declining on local and global scales. The impacts of this pulse of size-selective defaunation include cascading changes to smaller animals, particularly rodents, and alteration of many ecosystem processes and services, potentially involving changes to prevalence and transmission of zoonotic disease. Understanding linkages between biodiversity loss and zoonotic disease is important for both public health and nature conservation programs, and has been a source of much recent scientific debate. In the case of rodent-borne zoonoses, there is strong conceptual support, but limited empirical evidence, for the hypothesis that defaunation, the loss of large wildlife, increases zoonotic disease risk by directly or indirectly releasing controls on rodent density. We tested this hypothesis by experimentally excluding large wildlife from a savanna ecosystem in East Africa, and examining changes in prevalence and abundance of Bartonella spp. infection in rodents and their flea vectors. We found no effect of wildlife removal on per capita prevalence of Bartonella infection in either rodents or fleas. However, because rodent and, consequently, flea abundance doubled following experimental defaunation, the density of infected hosts and infected fleas was roughly twofold higher in sites where large wildlife was absent. Thus, defaunation represents an elevated risk in Bartonella transmission to humans (bartonellosis). Our results (i) provide experimental evidence of large wildlife defaunation increasing landscape-level disease prevalence, (ii) highlight the importance of susceptible host regulation pathways and host/vector density responses in biodiversity-disease relationships, and (iii) suggest that rodent-borne disease responses to large wildlife loss may represent an important context where this relationship is largely negative.


Assuntos
Animais Selvagens/parasitologia , Infecções por Bartonella/epidemiologia , Infestações por Pulgas/epidemiologia , Infestações por Piolhos/epidemiologia , Doenças dos Roedores/epidemiologia , Roedores/parasitologia , Xenopsylla , África Oriental/epidemiologia , Animais , Animais Selvagens/microbiologia , Infecções por Bartonella/transmissão , Biodiversidade , Ecossistema , Infestações por Pulgas/transmissão , Humanos , Quênia/epidemiologia , Infestações por Piolhos/transmissão , Prevalência , Fatores de Risco , Roedores/microbiologia , Zoonoses/epidemiologia
3.
BMC Evol Biol ; 16: 9, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26754250

RESUMO

Recently, a set of publications described flea fossils from Jurassic and Early Cretaceous geological strata in northeastern China, which were suggested to have parasitized feathered dinosaurs, pterosaurs, and early birds or mammals. In support of these fossils being fleas, a recent publication in BMC Evolutionary Biology described the extended abdomen of a female fossil specimen as due to blood feeding.We here comment on these findings, and conclude that the current interpretation of the evolutionary trajectory and ecology of these putative dinosaur fleas is based on appeal to probability, rather than evidence. Hence, their taxonomic positioning as fleas, or stem fleas, as well as their ecological classification as ectoparasites and blood feeders is not supported by currently available data.


Assuntos
Dinossauros/parasitologia , Sifonápteros , Animais , Evolução Biológica , China , Feminino , Fósseis , Probabilidade , Sifonápteros/classificação
4.
Mol Phylogenet Evol ; 90: 129-39, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25987528

RESUMO

Fleas (order Siphonaptera) are highly-specialized, diverse blood-feeding ectoparasites of mammals and birds with an enigmatic evolutionary history and obscure origin. We here present a molecular phylogenetic study based on a comprehensive taxon sampling of 259 flea taxa, representing 16 of the 18 extant families of this order. A Bayesian phylogenetic tree with strong nodal support was recovered, consisting of seven sequentially derived lineages with Macropsyllidae as the earliest divergence, followed by Stephanocircidae. Divergence times of flea lineages were estimated based on fossil records and host specific associations to bats (Chiroptera), suggesting that the common ancestor of extant Siphonaptera diversified during the Cretaceous. However, most of the intraordinal divergence into extant lineages took place after the K-Pg boundary. Ancestral states of host association and biogeographical distribution were reconstructed, suggesting with high likelihood that fleas originated in the southern continents (Gondwana) and migrated from South America to their extant distributions in a relatively short time frame. Theria (placental mammals and marsupials) represent the most likely ancestral host group of extant Siphonaptera, with marsupials occupying a more important role than previously assumed. Major extant flea families evolved in connection to post K-Pg diversification of Placentalia. The association of fleas with monotremes and birds is likely due to later secondary host association. These results suggest caution in casually interpreting recently discovered Mesozoic fossil "dinosaur fleas" of Northeast Asia as part of what we currently consider Siphonaptera.


Assuntos
Evolução Biológica , Sifonápteros/classificação , Animais , Teorema de Bayes , Fósseis , Filogenia
5.
BMC Genomics ; 15: 717, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25159222

RESUMO

BACKGROUND: First pass methods based on BLAST match are commonly used as an initial step to separate the different phylogenetic histories of genes in microbial genomes, and target putative horizontal gene transfer (HGT) events. This will continue to be necessary given the rapid growth of genomic data and the technical difficulties in conducting large-scale explicit phylogenetic analyses. However, these methods often produce misleading results due to their inability to resolve indirect phylogenetic links and their vulnerability to stochastic events. RESULTS: A new computational method of rapid, exhaustive and genome-wide detection of HGT was developed, featuring the systematic analysis of BLAST hit distribution patterns in the context of a priori defined hierarchical evolutionary categories. Genes that fall beyond a series of statistically determined thresholds are identified as not adhering to the typical vertical history of the organisms in question, but instead having a putative horizontal origin. Tests on simulated genomic data suggest that this approach effectively targets atypically distributed genes that are highly likely to be HGT-derived, and exhibits robust performance compared to conventional BLAST-based approaches. This method was further tested on real genomic datasets, including Rickettsia genomes, and was compared to previous studies. Results show consistency with currently employed categories of HGT prediction methods. In-depth analysis of both simulated and real genomic data suggests that the method is notably insensitive to stochastic events such as gene loss, rate variation and database error, which are common challenges to the current methodology. An automated pipeline was created to implement this approach and was made publicly available at: https://github.com/DittmarLab/HGTector. The program is versatile, easily deployed, has a low requirement for computational resources. CONCLUSIONS: HGTector is an effective tool for initial or standalone large-scale discovery of candidate HGT-derived genes.


Assuntos
Transferência Genética Horizontal , Genes Bacterianos , Software , Simulação por Computador , Evolução Molecular , Genômica , Modelos Genéticos , Rickettsia/genética , Ferramenta de Busca
6.
Appl Environ Microbiol ; 79(9): 2952-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23435889

RESUMO

Bat flies are a diverse clade of obligate ectoparasites on bats. Like most blood-feeding insects, they harbor endosymbiotic prokaryotes, but the origins and nature of these symbioses are still poorly understood. To expand the knowledge of bacterial associates in bat flies, the diversity and evolution of the dominant endosymbionts in six of eight nominal subfamilies of bat flies (Streblidae and Nycteribiidae) were studied. Furthermore, the localization of endosymbionts and their transmission across developmental stages within the family Streblidae were explored. The results show diverse microbial associates in bat flies, with at least four ancestral invasions of distantly related microbial lineages throughout bat fly evolution. Phylogenetic relationships support the presence of at least two novel symbiont lineages (here clades B and D), and extend the geographic and taxonomic range of a previously documented lineage ("Candidatus Aschnera chinzeii"; here clade A). Although these lineages show reciprocally monophyletic clusters with several bat fly host clades, their phylogenetic relationships generally do not reflect current bat fly taxonomy or phylogeny. However, within some endosymbiont clades, congruent patterns of symbiont-host divergence are apparent. Other sequences identified in this study fall into the widely distributed, highly invasive, insect-associated Arsenophonus lineage and may be the result of symbiont replacements and/or transient infections (here clade C). Vertical transmission of endosymbionts of clades B and D is supported by fluorescent signal (fluorescent in situ hybridization [FISH]) and microbial DNA detection across developmental stages. The fluorescent bacterial signal is consistently localized within structures resembling bacteriomes, although their anatomical position differs by host fly clade. In summary, the results suggest an obligate host-endosymbiont relationship for three of the four known symbiont clades associated with bat flies (clades A, B, and D).


Assuntos
Quirópteros/parasitologia , Dípteros/microbiologia , Enterobacteriaceae/genética , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Evolução Biológica , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dípteros/citologia , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Feminino , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Geografia , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
7.
Appl Environ Microbiol ; 78(24): 8639-49, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042170

RESUMO

We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships.


Assuntos
Quirópteros/parasitologia , Dípteros/microbiologia , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Simbiose , Animais , Fenômenos Fisiológicos Bacterianos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Gammaproteobacteria/genética , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Wolbachia/classificação , Wolbachia/genética , Wolbachia/isolamento & purificação
8.
Am J Primatol ; 74(10): 915-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22688756

RESUMO

Nonhuman primates show remarkable variation in several aspects of social structure. One way to characterize this variation in the genus Macaca is through the concept of social style, which is based on the observation that several social traits appear to covary with one another in a linear or at least continuous manner. In practice, macaques are more simply characterized as fitting a four-grade scale in which species range from extremely despotic (grade 1) to extremely tolerant (grade 4). Here, we examine the fit of three core measures of social style-two measures of dominance gradients (hierarchical steepness) and another closely related measure (counter-aggression)-to this scale, controlling for phylogenetic relationships. Although raw scores for both steepness and counter-aggression correlated with social scale in predicted directions, the distributions appeared to vary by measure. Counter-aggression appeared to vary dichotomously with scale, with grade 4 species being distinct from all other grades. Steepness measures appeared more continuous. Species in grades 1 and 4 were distinct from one another on all measures, but those in the intermediate grades varied inconsistently. This confirms previous indications that covariation is more readily observable when comparing species at the extreme ends of the scale than those in intermediate positions. When behavioral measures were mapped onto phylogenetic trees, independent contrasts showed no significant consistent directional changes at nodes below which there were evolutionary changes in scale. Further, contrasts were no greater at these nodes than at neutral nodes. This suggests that correlations with the scale can be attributed largely to species' phylogenetic relationships. This could be due in turn to a structural linkage of social traits based on adaptation to similar ecological conditions in the distant past, or simply to unlinked phylogenetic closeness.


Assuntos
Agressão , Macaca/psicologia , Filogenia , Predomínio Social , Animais , Teorema de Bayes , Feminino , Macaca/genética , Masculino , Cadeias de Markov , Método de Monte Carlo
9.
J Parasitol ; 108(3): 245-253, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687318

RESUMO

Microbial metabarcoding is a common method to study the biology of blood-feeding arthropods and identify patterns of potential pathogen transmission. Before DNA extraction, specimens are often surface washed to remove environmental contaminants. While surface washing is common, its effects on microbial diversity remain unclear. We characterized the microbiome of the flea species Ceratophyllus idius, an avian ectoparasite, and a potential vector of pathogens, using high-throughput 16S rRNA sequencing. Half of the nests from which fleas were collected were subjected to an environmental manipulation in which nesting materials were periodically replaced. In a crossed study design we surface washed half of the flea samples from each environmental condition to produce 4 experimental conditions. Environmental manipulations resulted in significant differences in the diversity and structure of the flea microbiome, but these differences were unapparent when specimens were surface washed. Furthermore, differential abundance testing of the experimental groups revealed that surface washing predominantly affected the abundance of bacterial groups that are characterized as environmental contaminants. These findings suggest that environmental changes primarily affect the surface microbiome of arthropods and that surface washing is a useful tool to reduce the footprint of the external microbiome on analysis.


Assuntos
Infestações por Pulgas , Microbiota , Sifonápteros , Animais , Bactérias/genética , Infestações por Pulgas/parasitologia , Infestações por Pulgas/prevenção & controle , Infestações por Pulgas/veterinária , RNA Ribossômico 16S/genética , Sifonápteros/microbiologia
10.
ISME Commun ; 2(1): 67, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938296

RESUMO

Suitable habitat fragment size, isolation, and distance from a source are important variables influencing community composition of plants and animals, but the role of these environmental factors in determining composition and variation of host-associated microbial communities is poorly known. In parasite-associated microbial communities, it is hypothesized that evolution and ecology of an arthropod parasite will influence its microbiome more than broader environmental factors, but this hypothesis has not been extensively tested. To examine the influence of the broader environment on the parasite microbiome, we applied high-throughput sequencing of the V4 region of 16S rRNA to characterize the microbiome of 222 obligate ectoparasitic bat flies (Streblidae and Nycteribiidae) collected from 155 bats (representing six species) from ten habitat fragments in the Atlantic Forest of Brazil. Parasite species identity is the strongest driver of microbiome composition. To a lesser extent, reduction in habitat fragment area, but not isolation, is associated with an increase in connectance and betweenness centrality of bacterial association networks driven by changes in the diversity of the parasite community. Controlling for the parasite community, bacterial network topology covaries with habitat patch area and exhibits parasite-species specific responses to environmental change. Taken together, habitat loss may have cascading consequences for communities of interacting macro- and microorgansims.

11.
BMC Evol Biol ; 11: 336, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-22093762

RESUMO

BACKGROUND: Little is known of the biological significance and evolutionary maintenance of integrated non-retroviral RNA virus genes in eukaryotic host genomes. Here, we isolated novel filovirus-like genes from bat genomes and tested for evolutionary maintenance. We also estimated the age of filovirus VP35-like gene integrations and tested the phylogenetic hypotheses that there is a eutherian mammal clade and a marsupial/ebolavirus/Marburgvirus dichotomy for filoviruses. RESULTS: We detected homologous copies of VP35-like and NP-like gene integrations in both Old World and New World species of Myotis (bats). We also detected previously unknown VP35-like genes in rodents that are positionally homologous. Comprehensive phylogenetic estimates for filovirus NP-like and VP35-like loci support two main clades with a marsupial and a rodent grouping within the ebolavirus/Lloviu virus/Marburgvirus clade. The concordance of VP35-like, NP-like and mitochondrial gene trees with the expected species tree supports the notion that the copies we examined are orthologs that predate the global spread and radiation of the genus Myotis. Parametric simulations were consistent with selective maintenance for the open reading frame (ORF) of VP35-like genes in Myotis. The ORF of the filovirus-like VP35 gene has been maintained in bat genomes for an estimated 13. 4 MY. ORFs were disrupted for the NP-like genes in Myotis. Likelihood ratio tests revealed that a model that accommodates positive selection is a significantly better fit to the data than a model that does not allow for positive selection for VP35-like sequences. Moreover, site-by-site analysis of selection using two methods indicated at least 25 sites in the VP35-like alignment are under positive selection in Myotis. CONCLUSIONS: Our results indicate that filovirus-like elements have significance beyond genomic imprints of prior infection. That is, there appears to be, or have been, functionally maintained copies of such genes in mammals. "Living fossils" of filoviruses appear to be selectively maintained in a diverse mammalian genus (Myotis).


Assuntos
Quirópteros/genética , Quirópteros/microbiologia , Evolução Molecular , Filoviridae/genética , Animais , Filoviridae/fisiologia , Genes Virais , Genoma , Filogenia , Integração Viral
12.
J Invertebr Pathol ; 107(3): 225-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21586290

RESUMO

Here we report the presence of Spiroplasma 16S rRNA in populations of two parasitic Leptus mites (Leptus sayi; Leptus lomani) and their Agathemera walking stick hosts. In walking sticks Spiroplasmas were detected in the gut, as well as muscle-tissues, but not in eggs. Throughout Argentina 15.4% of L. sayi populations and 14.3% of L. lomani populations surveyed screened positive for Spiroplasma. Phylogenetic analyses (ML, BCMC) place all sequences within the Ixodetis group. Most sequences form a well-supported sister subclade to the rest of Ixodetis. We briefly discuss the role of Leptus mites in the natural transmission of Spiroplasma.


Assuntos
Vetores Aracnídeos/microbiologia , Insetos/microbiologia , Ácaros/microbiologia , Spiroplasma/isolamento & purificação , Animais , Vetores Aracnídeos/fisiologia , Insetos/parasitologia , Ácaros/fisiologia , Filogenia , Reação em Cadeia da Polimerase , Spiroplasma/genética
13.
Arthropod Struct Dev ; 60: 101007, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341370

RESUMO

As an obligate ectoparasite of bats, the bat fly Trichobius frequens (Diptera: Streblidae) inhabits the same subterranean environment as their nocturnal bat hosts. In this study, we characterize the macromorphology, optical architecture, rhabdom anatomy, photoreceptor absorbance, and opsin expression of the significantly reduced visual system in T. frequens resulting from evolution in the dark. The eyes develop over a 21-22 day pupal developmental period, with pigmentation appearing on pupal day 11. After eclosion as an adult, T. frequens eyes consist of on average 8 facets, each overlying a fused rhabdom consisting of anywhere from 11 to 18 estimated retinula cells. The dimensions of the facets and fused rhabdoms are similar to those measured in other nocturnal insects. T. frequens eyes are functional as shown by expression of a Rh1 opsin forming a visual pigment with a peak sensitivity to 487 nm, similar to other dipteran Rh1 opsins. Future studies will evaluate how individuals with such reduced capabilities for spatial vision as well as sensitivity still capture enough visual information to use flight to maneuver through dark habitats.


Assuntos
Olho Composto de Artrópodes/anatomia & histologia , Dípteros/anatomia & histologia , Células Fotorreceptoras de Invertebrados/citologia , Animais , Quirópteros/parasitologia , Olho Composto de Artrópodes/ultraestrutura , Dípteros/genética , Dípteros/ultraestrutura , Feminino , Expressão Gênica , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura
14.
Appl Environ Microbiol ; 76(22): 7521-5, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20851962

RESUMO

Mealybugs (Coccoidea: Pseudococcidae) are sap-sucking plant parasites that harbor bacterial endosymbionts within specialized organs. Previous studies have identified two subfamilies, Pseudococcinae and Phenacoccinae, within mealybugs and determined the primary endosymbionts (P-endosymbionts) of the Pseudococcinae to be Betaproteobacteria ("Candidatus Tremblaya princeps") containing Gammaproteobacteria secondary symbionts. Here, the P-endosymbionts of phenacoccine mealybugs are characterized based on 16S rRNA from the bacteria of 20 species of phenacoccine mealybugs and four outgroup Puto species (Coccoidea: Putoidae) and aligned to more than 100 published 16S rRNA sequences from symbiotic and free-living bacteria. Phylogenetic analyses recovered three separate lineages of bacteria from the Phenacoccinae, and these are considered to be the P-endosymbionts of their respective mealybug hosts, with those from (i) the mealybug genus Rastrococcus belonging to the Bacteroidetes, (ii) the subterranean mealybugs, tribe Rhizoecini, also within Bacteroidetes, in a clade sister to cockroach endosymbionts (Blattabacterium), and (iii) the remaining Phenacoccinae within the Betaproteobacteria, forming a well-supported sister group to "Candidatus Tremblaya princeps." Names are proposed for two strongly supported lineages: "Candidatus Brownia rhizoecola" for P-endosymbionts of Rhizoecini and "Candidatus Tremblaya phenacola" for P-endosymbionts of Phenacoccinae excluding Rastrococcus and Rhizoecini. Rates of nucleotide substitution among lineages of Tremblaya were inferred to be significantly faster than those of free-living Betaproteobacteria. Analyses also recovered a clade of Gammaproteobacteria, sister to the P-endosymbiont lineage of aphids ("Candidatus Buchnera aphidicola"), containing the endosymbionts of Putoidae, the secondary endosymbionts of pseudococcine mealybugs, and the endosymbionts of several other insect groups.


Assuntos
Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Hemípteros/microbiologia , Simbiose , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Hemípteros/fisiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Parasit Vectors ; 13(1): 13, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924262

RESUMO

BACKGROUND: Bartonella is a genus of Gram-negative facultative intracellular Alphaproteobacteria of public health importance. Although they are known to mainly infect mammalian hosts with some blood-feeding arthropods having been confirmed as vectors, there is some evidence of Bartonella association with non-mammalian hosts including birds. METHODS: Here we used high-throughput sequencing of 16S rRNA and Sanger sequencing of the citrate synthase (gltA) genes to test for the presence of Bartonellaceae in the blood of three migratory cavity nesting bird species, purple martins (Progne subis), tree swallows (Tachycineta bicolor) and eastern bluebirds (Sialia sialis) and their most prevalent and abundant nest ectoparasites, Dermanyssus prognephilus (mite), Ceratophyllus idius (flea) and Protocalliphora sialia (bird blow fly larva). We constructed maximum likelihood phylogenetic trees to verify the placement of the resulting sequences in the Bartonellaceae. RESULTS: We found evidence of Bartonella in all three bird species and all three arthropod species tested. We report multiple instances of identical Bartonella sequences in both birds and parasites, leading to the likely hypothesis that these ectoparasites are potential vectors of Bartonella. Our phylogenetic analysis suggests that 'avian Bartonella' may form its own sub-clade within the genus Bartonella. CONCLUSIONS: To the best of our knowledge, we provide the first confirmation of overlapping Bartonella strains among bird hosts and various species of nest-associated ectoparasites from the same system, suggesting a possible Bartonella host-vector relationship between these arthropods and a non-mammalian host. Our study adds to the growing appreciation of the Bartonellaceae as a phylogenetically diverse group with a wide range of hosts.


Assuntos
Vetores Aracnídeos/microbiologia , Bartonella/genética , Aves/microbiologia , Aves/parasitologia , Insetos Vetores/microbiologia , Animais , Bartonella/isolamento & purificação , Infecções por Bartonella/sangue , Citrato (si)-Sintase/genética , Dípteros/microbiologia , Ectoparasitoses/parasitologia , Genes Bacterianos , Metagenômica/métodos , Ácaros/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Sifonápteros/microbiologia
16.
J Parasitol ; 95(2): 365-71, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18702568

RESUMO

Paleoparasitological research has made important contributions to our understanding of parasite evolution and ecology since the 1960s. Since then, most studies have focused on paleoparasitological evidence from single sites or samples. With the development of high throughput sequencing techniques, new avenues of investigation for paleoparasitological material are opening up. Here, I provide an overview of recent developments and highlight how these results will broaden the scope of the field, placing paleoparasitology at the interface of a wide array of studies, including parasitology, climate change, human evolution, and evolutionary processes.


Assuntos
Pesquisa Biomédica/tendências , Paleopatologia/tendências , Parasitologia/tendências , Animais , Animais Domésticos , Evolução Biológica , Clima , DNA/metabolismo , Emigração e Imigração , Genética Populacional , Genômica/tendências , História Antiga , Humanos
17.
J Parasitol ; 95(2): 308-14, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18684039

RESUMO

We studied the deposition of pupae of the winged bat fly Trichobius sp. (caecus group; Diptera), an ectoparasite of Natalus stramineus (Chiroptera, Natalidae), in a natural cave in Tamaulipas, Mexico. For the first time, we show a strong spatial segregation of populations of a streblid bat fly at different stages of development. Using molecular techniques we were able to match developmental stages to adults. Only 5 pupae were present in the main bat roosts. The overwhelming majority occurred exclusively in the bat flyway passages at a considerable distance from roosting bats. Pupal density corresponded positively with the average flight height of bats in the cave passage. Taken together, observations suggest that these ectoparasites must actively seek out their hosts by moving onto passing or roosting bats. The scarceness of pupae in the main roost may be dictated by environmental constraints for their development. The estimated population of viable pupae far exceeds the population of imagoes on the bats, and predation on adults by spiders is common.


Assuntos
Quirópteros/parasitologia , Dípteros/fisiologia , Ecossistema , Ectoparasitoses/veterinária , Animais , Ectoparasitoses/parasitologia , Feminino , Interações Hospedeiro-Parasita , Masculino , México , Pupa/fisiologia
18.
J Parasitol ; 105(4): 555-566, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31348717

RESUMO

Dispersal influences the evolution and adaptation of organisms, but it can be difficult to detect. Host-specific parasites provide information about the dispersal of their hosts and may be valuable for examining host dispersal that does not result in gene flow or that has low signals of gene flow. We examined the population connectivity of the buffy flower bat, Erophylla sezekorni (Chiroptera: Phyllostomidae), and its associated obligate ectoparasite, Trichobius frequens (Diptera: Streblidae), across a narrow oceanic channel in The Bahamas that has previously been implicated as a barrier to dispersal in bats. Due to the horizontal transmission of T. frequens, we were able to test the hypothesis that bats are dispersing across this channel, but this dispersal does not result in gene flow, occurs rarely, or started occurring recently. We developed novel microsatellite markers for the family Streblidae in combination with previously developed markers for bats to genotype individuals from 4 islands in The Bahamas. We provide evidence for a single population of the host, E. sezekorni, but 2 populations of its bat flies, potentially indicating a recent reduction of gene flow in E. sezekorni, rare dispersal, or infrequent transportation of bat flies with their hosts. Despite high population differentiation in bat flies indicated by microsatellites, mitochondrial DNA shows no polymorphism, suggesting that bacterial reproductive parasites may be contributing to mitochondrial DNA sweeps. Parasites, including bat flies, provide independent information about their hosts and can be used to test hypotheses of host dispersal that may be difficult to assess using host genetics alone.


Assuntos
Distribuição Animal/fisiologia , Quirópteros/fisiologia , Quirópteros/parasitologia , Dípteros/fisiologia , Ectoparasitoses/veterinária , Algoritmos , Alelos , Animais , Bahamas , Teorema de Bayes , Análise por Conglomerados , Sequência Consenso , DNA Mitocondrial/química , Dípteros/genética , Dípteros/microbiologia , Ectoparasitoses/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Interações Hospedeiro-Parasita , Cadeias de Markov , Alinhamento de Sequência/veterinária , Wolbachia/fisiologia
19.
Biol Proced Online ; 10: 66-73, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-19461954

RESUMO

Gene families are widely used in comparative genomics, molecular evolution, and in systematics. However, they are constructed in different manners, their data analyzed and interpreted differently, with different underlying assumptions, leading to sometimes divergent conclusions. In systematics, concepts like monophyly and the dichotomy between homoplasy and homology have been central to the analysis of phylogenies. We critique the traditional use of such concepts as applied to gene families and give examples of incorrect inferences they may lead to. Operational definitions that have emerged within functional genomics are contrasted with the common formal definitions derived from systematics. Lastly, we question the utility of layers of homology and the meaning of homology at the character state level in the context of sequence evolution. From this, we move forward to present an idealized strategy for characterizing gene family evolution for both systematic and functional purposes, including recent methodological improvements.

20.
J Vector Ecol ; 33(2): 263-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19263845

RESUMO

The removal of large herbivorous mammals can cause dramatic increases in the densities of small mammals. These small mammals are hosts for a variety of ectoparasites, many of which are important pathogens of human diseases such as plague and murine typhus. It is thus valuable from a human health perspective to understand if large herbivore removals can indirectly affect ectoparasite numbers and thus potentially alter disease risk. To make this determination, we experimentally excluded large herbivores and measured the number of fleas present on the numerically dominant small mammal, the pouched mouse, Saccostomus mearnsi. Removing large herbivores nearly doubled S. mearnsi density, while the percentage of mice infested with fleas (prevalence) and the average number of fleas per sampled mouse (intensity) remained constant. The net effect of doubling the number of mice via the removal of large herbivores was a near doubling in the number of fleas present in the study habitat. Because these fleas also parasitize humans and can serve as disease vectors, this work empirically demonstrates a potential mechanism by which ecosystem alterations could affect human risk for zoonotic diseases.


Assuntos
Mamíferos/fisiologia , Mamíferos/parasitologia , Sifonápteros/fisiologia , Animais , Ecossistema , Comportamento Alimentar , Interações Hospedeiro-Parasita , Quênia , Plantas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA