Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518226

RESUMO

Extracellular vesicles (EVs) are constantly secreted from both eukaryotic and prokaryotic cells. EVs, including those referred to as exosomes, may have an impact on cell signaling and an incidence in diseased cells. In this manuscript, a platform to capture, quantify, and phenotypically classify the EVs secreted from single cells is introduced. Microfluidic chambers of about 300 pL are employed to trap and isolate individual cells. The EVs secreted within these chambers are then captured by surface-immobilized monoclonal antibodies (mAbs), irrespective of their intracellular origin. Immunostaining against both plasma membrane and cytosolic proteins was combined with highly sensitive, multicolor total internal reflection fluorescence microscopy to characterize the immobilized vesicles. The data analysis of high-resolution images allowed the assignment of each detected EV to one of 15 unique populations and demonstrated the presence of highly heterogeneous phenotypes even at the single-cell level. The analysis also revealed that each mAb isolates phenotypically different EVs and that more vesicles were effectively immobilized when CD63 was targeted instead of CD81. Finally, we demonstrate how a heterogeneous suppression in the secreted vesicles is obtained when the enzyme neutral sphingomyelinase is inhibited.


Assuntos
Vesículas Extracelulares/metabolismo , Transporte Biológico/fisiologia , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Exossomos/metabolismo , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Fenótipo
2.
Am J Physiol Cell Physiol ; 324(4): C821-C836, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802732

RESUMO

Pericytes are mural cells that play an important role in regulation of angiogenesis and endothelial function. Cadherins are a superfamily of adhesion molecules mediating Ca2+-dependent homophilic cell-cell interactions that control morphogenesis and tissue remodeling. To date, classical N-cadherin is the only cadherin described on pericytes. Here, we demonstrate that pericytes also express T-cadherin (H-cadherin, CDH13), an atypical glycosyl-phosphatidylinositol (GPI)-anchored member of the superfamily that has previously been implicated in regulation of neurite guidance, endothelial angiogenic behavior, and smooth muscle cell differentiation and progression of cardiovascular disease. The aim of the study was to investigate T-cadherin function in pericytes. Expression of T-cadherin in pericytes from different tissues was performed by immunofluorescence analysis. Using lentivirus-mediated gain-of-function and loss-of-function in cultured human pericytes, we demonstrate that T-cadherin regulates pericyte proliferation, migration, invasion, and interactions with endothelial cells during angiogenesis in vitro and in vivo. T-cadherin effects are associated with the reorganization of the cytoskeleton, modulation of cyclin D1, α-smooth muscle actin (αSMA), integrin ß3, metalloprotease MMP1, and collagen expression levels, and involve Akt/GSK3ß and ROCK intracellular signaling pathways. We also report the development of a novel multiwell 3-D microchannel slide for easy analysis of sprouting angiogenesis from a bioengineered microvessel in vitro. In conclusion, our data identify T-cadherin as a novel regulator of pericyte function and support that it is required for pericyte proliferation and invasion during active phase of angiogenesis, while T-cadherin loss shifts pericytes toward the myofibroblast state rendering them unable to control endothelial angiogenic behavior.


Assuntos
Células Endoteliais , Pericitos , Humanos , Pericitos/metabolismo , Células Endoteliais/metabolismo , Caderinas/genética , Caderinas/metabolismo , Morfogênese , Neovascularização Fisiológica
3.
Anal Chem ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608325

RESUMO

Extracellular vesicles (EVs) are considered as valuable biomarkers to discriminate healthy from diseased cells such as cancer. Passing cytosolic and plasma membranes before their release, EVs inherit the biochemical properties of the cell. Here, we determine protein profiles of single EVs to understand how much they represent their cell of origin. We use a microfluidic platform which allows to immobilize EVs from completely isolated single cells, reducing heterogeneity of EVs as strongly seen in cell populations. After immunostaining, we employ four-color total internal reflection fluorescence microscopy to enumerate EVs and determine their biochemical fingerprint encoded in membranous or cytosolic proteins. Analyzing single cells derived from pleural effusions of two different human adenocarcinoma as well as from human embryonic kidney (SkBr3, MCF-7 and HEK293, respectively), we observed that a single cell secretes enough EVs to extract the respective tissue fingerprint. We show that overexpressed integral plasma membrane proteins are also found in EV membranes, which together with populations of colocalized proteins, provide a cell-specific, characteristic pattern. Our method highlights the potential of EVs as a diagnostic marker and can be directly employed for fundamental studies of EV biogenesis.

4.
Angew Chem Int Ed Engl ; 61(13): e202114632, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34989471

RESUMO

The global surge in bacterial resistance against traditional antibiotics triggered intensive research for novel compounds, with antimicrobial peptides (AMPs) identified as a promising candidate. Automated methods to systematically generate and screen AMPs according to their membrane preference, however, are still lacking. We introduce a novel microfluidic system for the simultaneous cell-free production and screening of AMPs for their membrane specificity. On our device, AMPs are cell-free produced within water-in-oil-in-water double emulsion droplets, generated at high frequency. Within each droplet, the peptides can interact with different classes of co-encapsulated liposomes, generating a membrane-specific fluorescent signal. The double emulsions can be incubated and observed in a hydrodynamic trapping array or analyzed via flow cytometry. Our approach provides a valuable tool for the discovery and development of membrane-active antimicrobials.


Assuntos
Peptídeos Antimicrobianos , Microfluídica , Emulsões/química , Citometria de Fluxo/métodos , Microfluídica/métodos , Água/química
5.
Angew Chem Int Ed Engl ; 61(48): e202207328, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36130864

RESUMO

The potential for ultrahigh-throughput compartmentalization renders droplet microfluidics an attractive tool for the directed evolution of enzymes. Importantly, it ensures maintenance of the phenotype-genotype linkage, enabling reliable identification of improved mutants. Herein, we report an approach for ultrahigh-throughput screening of an artificial metalloenzyme in double emulsion droplets (DEs) using commercially available fluorescence-activated cell sorters (FACS). This protocol was validated by screening a 400 double-mutant streptavidin library for ruthenium-catalyzed deallylation of an alloc-protected aminocoumarin. The most active variants, identified by next-generation sequencing, were in good agreement with hits obtained using a 96-well plate procedure. These findings pave the way for the systematic implementation of FACS for the directed evolution of (artificial) enzymes and will significantly expand the accessibility of ultrahigh-throughput DE screening protocols.


Assuntos
Metaloproteínas , Emulsões , Metaloproteínas/genética , Microfluídica , Citometria de Fluxo , Estreptavidina , Ensaios de Triagem em Larga Escala
6.
Anal Chem ; 93(38): 13008-13013, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34533299

RESUMO

We introduce the UV-vis spectra-activated droplet sorter (UVADS) for high-throughput label-free chemical identification and enzyme screening. In contrast to previous absorbance-based droplet sorters that relied on single-wavelength absorbance in the visible range, our platform collects full UV-vis spectra from 200 to 1050 nm at up to 2100 spectra per second. Our custom-built open-source software application, "SpectraSorter," enables real-time data processing, analysis, visualization, and selection of droplets for sorting with any set of UV-vis spectral features. An optimized UV-vis detection region extended the absorbance path length for droplets and allowed for the direct protein quantification down to 10 µM of bovine serum albumin at 280 nm. UV-vis spectral data can distinguish a variety of different chemicals or spurious events (such as air bubbles) that are inaccessible at a single wavelength. The platform is used to measure ergothionase enzyme activity from monoclonal microcolonies isolated in droplets. In a label-free manner, we directly measure the ergothioneine substrate to thiourocanic acid product conversion while tracking the microcolony formation. UVADS represents an important new tool for high-throughput label-free in-droplet chemical analysis.


Assuntos
Software
7.
Anal Chem ; 93(12): 5137-5144, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33721989

RESUMO

We investigated the permeation of molecules across lipid membranes on an open microfluidic platform. An array of droplet pairs was created by spotting aqueous droplets, dispersed in a lipid oil solution, onto a plate with cavities surrounded by a hydrophobic substrate. Droplets in two adjacent cavities come in contact and form an artificial lipid bilayer, called a droplet interface bilayer (DIB). The method allows for monitoring permeation of fluorescently tagged compounds from a donor droplet to an acceptor droplet. A mathematical model was applied to describe the kinetics and determine the permeation coefficient. We also demonstrate that permeation kinetics can be followed over a series of droplets, all connected via DIBs. Moreover, by changing the lipid oil composition after spotting donor droplets, we were able to create asymmetric membranes that we used to mimic the asymmetry of the cellular plasma membrane. Finally, we developed a protocol to separate and extract the droplets for label-free analysis of permeating compounds by liquid chromatography-mass spectrometry. Our versatile platform has the potential to become a new tool for the screening of drug membrane permeability in the future.


Assuntos
Bicamadas Lipídicas , Água , Membrana Celular , Interações Hidrofóbicas e Hidrofílicas , Membranas
8.
Angew Chem Int Ed Engl ; 60(46): 24368-24387, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33539653

RESUMO

Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.


Assuntos
Evolução Molecular Direcionada , Enzimas/metabolismo , Microfluídica/métodos , Antibacterianos/biossíntese , Antibacterianos/química , Emulsões/química , Enzimas/genética , Escherichia coli/química , Escherichia coli/metabolismo , Microfluídica/instrumentação , Mutagênese , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Taq Polimerase/genética , Taq Polimerase/metabolismo
9.
Biochemistry ; 59(39): 3772-3781, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32936629

RESUMO

Naturally occurring membranolytic antimicrobial peptides (AMPs) are rarely cell-type selective and highly potent at the same time. Template-based peptide design can be used to generate AMPs with improved properties de novo. Following this approach, 18 linear peptides were obtained by computationally morphing the natural AMP Aurein 2.2d2 GLFDIVKKVVGALG into the synthetic model AMP KLLKLLKKLLKLLK. Eleven of the 18 chimeric designs inhibited the growth of Staphylococcus aureus, and six peptides were tested and found to be active against one resistant pathogenic strain or more. One of the peptides was broadly active against bacterial and fungal pathogens without exhibiting toxicity to certain human cell lines. Solution nuclear magnetic resonance and molecular dynamics simulation suggested an oblique-oriented membrane insertion mechanism of this helical de novo peptide. Temperature-resolved circular dichroism spectroscopy pointed to conformational flexibility as an essential feature of cell-type selective AMPs.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Sequência de Aminoácidos , Desenho de Fármacos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento
10.
Anal Chem ; 92(12): 8414-8421, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32449859

RESUMO

We demonstrate the in-droplet separation and enrichment of molecules from small organic molecules to long nucleic acids (lambda DNA). Electric potentials are applied via two parallel three-dimensional electrodes, which interface the nanodroplets through polydimethylsiloxane (PDMS)-carbon composite membranes. These membranes enable the generation of uniform electric fields inside the droplets, while simultaneously preventing the formation of electrolytic byproducts. Biomolecules of different sizes migrate toward one side of the droplets, according to their net charge, when exposed to the electric field. Directly afterward, a Y-junction promotes droplet splitting, resulting in the generation of biomolecule-enriched daughter droplets. Biomolecules were fluorescently labeled, and fluorescence microscopy was employed to assess their electrophoretic separation and enrichment. Experimental results demonstrate how the enrichment of biomolecules is influenced by their size, charge, and concentration, by the ionic strength, viscosity, and pH of the suspending medium, and by the in-droplet flow profile. Enrichments above 95% were observed for small molecules and highly charged species at velocities over 10 mm/s (13 droplets per second). Moreover, the enrichment performance asymptotically approached a value of 38% for velocities as high as 50 mm/s, demonstrating the potential of this technique for the high-throughput separation of charged species. The applicability of the system was demonstrated by cleaving a peptide and selectively separating the cleaved fragments in different daughter droplets on the basis of their net charge.


Assuntos
DNA/isolamento & purificação , Fluoresceínas/isolamento & purificação , DNA/química , Eletrodos , Eletroforese , Fluoresceínas/química , Tamanho da Partícula , Propriedades de Superfície
11.
Anal Chem ; 92(5): 3810-3818, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990188

RESUMO

Miniaturization of cell-based assays enables the analysis of secreted compounds from low cell numbers down to a single cell. Droplet microfluidics is a well-established tool for high-throughput single-cell analysis. Nevertheless, the integration of label-free bioanalytical techniques like mass spectrometry is still ongoing. For example, without additional separation steps, droplet-enclosed cells do not survive the analysis. Cell separation techniques for droplets have been reported, but could not yet be coupled to mass spectrometric analysis. Here, we present a simple approach for high-throughput cell separation in parallel in nanoliter droplets and demonstrate that it can be used for qualitative analysis of protein secretion by the yeast Komagataella phaffii. Using a custom-made droplet spotter, we generated an array of 200 droplets of nanoliter volumes on a glass plate, each containing approximately 500 cells. After cultivation for 24 h, a second plate was placed above the droplet array and brought in contact with the droplets. All droplets were sampled in parallel by plate-based droplet splitting. The nanoliter samples of the supernatant could be interfaced with mass spectrometry and we were able to detect the protein brazzein (his-tagged, 7445 Da) in all but two droplets. Additionally, we show that the cells were viable after the cell separation and a sample from one spot could be transferred to a cultivation tube. An advantage of our protocol is that each cell suspension is directly linked to the analysis result by its position. Furthermore, we demonstrate that our method is capable of splitting around 6000 droplets in a few seconds. In the future, additional processing steps on a small scale, such as desalting and protein digestion, could be developed and will enable structural proteomics in nanoliter volumes.


Assuntos
Proteínas Recombinantes/análise , Saccharomycetales/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Microfluídica/instrumentação , Miniaturização , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Análise de Célula Única
12.
Anal Chem ; 91(3): 2066-2073, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30571917

RESUMO

High-throughput screening of cell-secreted proteins is essential for various biotechnological applications. In this article, we show a microfluidic approach to perform the analysis of cell-secreted proteins in nanoliter droplet arrays by two complementary methods, fluorescence microscopy and mass spectrometry. We analyzed the secretion of the enzyme phytase, a phosphatase used as an animal feed additive, from a low number of yeast cells. Yeast cells were encapsulated in nanoliter volumes by droplet microfluidics and deposited on spatially defined spots on the surface of a glass slide mounted on the motorized stage of an inverted fluorescence microscope. During the following incubation for several hours to produce phytase, the droplets can be monitored by optical microscopy. After addition of a fluorogenic substrate at a defined time, the relative concentration of phytase was determined in every droplet. Moreover, we demonstrate the use of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to monitor the multistep conversion of the native substrate phytic acid by phytase secreted in 7 nL droplets containing 50-100 cells. Our method can be adapted to various other protocols. As the droplets are easily accessible, compounds such as assay reagents or matrix molecules can be added to all or to selected droplets only, or part of the droplet volume could be removed. Hence, this platform is a versatile tool for questions related to cell secretome analysis.


Assuntos
6-Fitase/análise , Técnicas Analíticas Microfluídicas , Nanopartículas/química , 6-Fitase/metabolismo , Tamanho da Partícula , Propriedades de Superfície
13.
Small ; 15(33): e1901547, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31237758

RESUMO

Shown here is the site-specific formation of single extraordinarily long metal-organic micro- and nanowires using a microfluidic device made of poly(dimethylsiloxane) (PDMS). This approach exploits two concepts, i) the diffusion of organic precursor molecules through PDMS and ii) the use of microfluidic channels as a growth template. To initiate wire formation, metal and organic precursor solutions are filled into different supply channels that are separated by PDMS. As the precursor diffuses through PDMS, and thereby infiltrates the adjacent channel, the growth of micro- and nanowires starts at the side walls of this adjacent channel. The formation yields single wires with sizes ranging from several hundreds of micrometers to millimeters at diameters of 0.5-2 µm. The principles of this formation pathway are demonstrated with the reaction of tetrathiafulvalene (TTF) and gold(III) ions that yields Au-TTF wires. The influence of various reaction parameters including the choice of solvents and the chip fabrication protocol on the reaction are evaluated. Based on these findings, a further microfluidic device design with orthogonally arranged channels is developed, and the formation of single wires in a channel-defined pattern is demonstrated. Moreover, the possibility of pulsed precursor supply allows for advanced control over the growth of the wires.

14.
Chembiochem ; 20(20): 2666-2673, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31087814

RESUMO

Giant unilamellar vesicles (GUVs) are considered to be the gold standard for assembling artificial cells from the bottom up. In this study, we investigated the behavior of such biomimetic vesicles as they were subjected to mechanical compression. A microfluidic device is presented that comprises a trap to capture GUVs and a microstamp that is deflected downwards to mechanically compress the trapped vesicle. After characterization of the device, we show that single-phase GUVs can be controllably compressed to a high degree of deformation (D=0.40) depending on the pressure applied to the microstamp. A permeation assay was implemented to show that vesicle bursting is prevented by water efflux. Next, we mechanically compressed GUVs with co-existing liquid-ordered and liquid-disordered membrane phases. Upon compression, we observed that the normally stable lipid domains reorganized themselves across the surface and fused into larger domains. This phenomenon, observed here in a model membrane system, not only gives us insights into how the multicomponent membranes of artificial cells behave, but might also have interesting consequences for the role of lipid rafts in biological cells that are subjected to compressive forces in a natural environment.


Assuntos
Células Artificiais/química , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Lipossomas Unilamelares/química , Células Artificiais/citologia , Microfluídica , Pressão , Biologia Sintética
15.
Analyst ; 144(19): 5755-5765, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31433410

RESUMO

The bacterial toxin botulinum neurotoxin A (BoNT/A) is not only an extremely toxic substance but also a potent pharmaceutical compound that is used in a wide spectrum of neurological disorders and cosmetic applications. The quantification of the toxin is extremely challenging due to its extraordinary high physiological potency and is further complicated by the toxin's three key functionalities that are necessary for its activity: receptor binding, internalization-translocation, and catalytic activity. So far, the industrial standard to measure the active toxin has been the mouse bioassay (MBA) that is considered today as outdated due to ethical issues. Therefore, recent introductions of cell-based assays were highly anticipated; their impact however remains limited due to their labor-intensive implementation. This report describes a new in vitro approach that combines a nanosensor based on the use of nerve cell-mimicking nanoreactors (NMN) with microfluidic technology. The nanosensor was able to measure all three key functionalities, and therefore suitable to quantify the amount of physiologically active BoNT/A. The integration of such a sensor in a microfluidic device allowed the detection and quantification of BoNT/A amounts in a much shorter time than the MBA (<10 h vs. 2-4 days). Lastly, the system was also able to reliably quantify physiologically active BoNT/A within a simple final pharmaceutical formulation. This complete in vitro testing system and its unique combination of a highly sensitive nanosensor and microfluidic technology represent a significant ethical advancement over in vivo measures and a possible alternative to cell-based in vitro detection methods.


Assuntos
Materiais Biomiméticos , Toxinas Botulínicas Tipo A/análise , Células Imobilizadas , Dispositivos Lab-On-A-Chip , Nanoestruturas , Neurônios , Animais , Técnicas Biossensoriais , Medicamentos de Ervas Chinesas/química , Técnicas In Vitro/métodos , Lipossomos/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Ligação Proteica , Albumina Sérica Humana/química , Ressonância de Plasmônio de Superfície , Suínos
16.
Anal Chem ; 90(3): 2302-2309, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29309134

RESUMO

Because of inhomogeneous matrix-assisted laser desorption/ionization (MALDI) matrix crystallization and laser shot-to-shot variability, quantitation is not generally performed by MALDI mass spectrometry. Here we introduce a high-throughput MALDI method using an innovative high-density microarray for mass spectrometry (MAMS) technology, which allows semiquantitative measurement of cocaine and its metabolites, benzoylecgonine, cocaethylene, and ecgonine methyl ester. A MAMS slide containing lanes of hydrophilic spots and an automated slider to drag a sample droplet over several small spots can accomplish automatic sample aliquoting and lead to homogeneous crystallization of the matrix-analyte mixture and, thus, to a reproducible signal (average RSD 6%). Four hair samples of self-reported drug users were analyzed in parallel by MALDI-MS/MS and by a validated LC-MS/MS method. The consumption profiles as well as the metabolite-parent drug ratios obtained correlated well, confirming the effectiveness of the MALDI-MS/MS method to establish a calendar of consumption in only 1 mg of hair. The analysis time for 10 hair samples is below 40 min, with 12 replicates per sample. Since only 3 µL of a 20 µL extract is analyzed, complementary assays are possible, such as the detection of additional drugs. The semiquantitative MALDI method worked well with only a small amount of hair and gave results in less than 4 min per sample, including replicates. This was made possible by the use of MAMS slides for sample preparation, which thus present significant advantages over traditional methods in cases where results are required urgently or if samples are scarce.


Assuntos
Cocaína/análise , Cabelo/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto , Cocaína/análogos & derivados , Feminino , Humanos , Limite de Detecção , Masculino , Reprodutibilidade dos Testes
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 795-805, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29679741

RESUMO

Nucleated cells eliminate lesions induced by bacterial pore-forming toxins, such as pneumolysin via shedding patches of damaged plasmalemma into the extracellular milieu. Recently, we have shown that the majority of shed pneumolysin is present in the form of inactive pre-pores. This finding is surprising considering that shedding is triggered by Ca2+-influx following membrane perforation and therefore is expected to positively discriminate for active pores versus inactive pre-pores. Here we provide evidence for the existence of plasmalemmal domains that are able to attract pneumolysin at high local concentrations. Within such a domain an immediate plasmalemmal perforation induced by a small number of pneumolysin pores would be capable of triggering the elimination of a large number of not yet active pre-pores/monomers and thus pre-empt more frequent and perilous perforation events. Our findings provide further insights into the functioning of the cellular repair machinery which benefits from an inhomogeneous plasmalemmal distribution of pneumolysin.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Bicamadas Lipídicas/metabolismo , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/metabolismo , Derrame de Bactérias/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Colesterol/metabolismo , Células HEK293 , Humanos , Microscopia Intravital , Bicamadas Lipídicas/imunologia , Microfluídica , Infecções Pneumocócicas/microbiologia , Estreptolisinas/metabolismo
18.
Chem Biodivers ; 15(10): e1800302, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30074284

RESUMO

A quantitative analysis by confocal fluorescence microscopy of the entry into HEK293 and MCF-7 cells by fluorescein-labeled octaarginine (1) and by three octa-Adp derivatives (2 - 4, octamers of the ß-Asp-Arg-dipeptide, derived from the biopolymer cyanophycin) is described, including the effects of the membrane dye R18 and of DMSO on cell penetration.


Assuntos
Proteínas de Bactérias/farmacocinética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Corantes/farmacologia , Dimetil Sulfóxido/farmacologia , Guanidina/farmacocinética , Oligopeptídeos/farmacocinética , Proteínas de Bactérias/química , Guanidina/química , Células HEK293 , Humanos , Células MCF-7 , Oligopeptídeos/química
19.
Sensors (Basel) ; 18(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303990

RESUMO

Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed.

20.
Anal Chem ; 89(10): 5484-5493, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28415842

RESUMO

A spectrophotometric assay for the determination of horseradish peroxidase (HRP) in aqueous solution with p-phenylenediamine (PPD, benzene-1,4-diamine) as electron donor substrate and hydrogen peroxide (H2O2) as oxidant was developed. The oxidation of PPD by HRP/H2O2 leads to the formation of Bandrowski's base ((3E,6E)-3,6-bis[(4-aminophenyl)imino]cyclohexa-1,4-diene-1,4-diamine), which can be quantified by following the increase in absorbance at 500 nm. The assay was applied for monitoring the activity of HRP inside ≈180 nm-sized lipid vesicles (liposomes), prepared from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and purified by size exclusion chromatography. Because of the high POPC bilayer permeability of PPD and H2O2, the HRP-catalyzed oxidation of PPD occurs inside the vesicles once PPD and H2O2 are added to the vesicle suspension. In contrast, if instead of PPD the bilayer-impermeable substrate ABTS2- (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)) is used, the oxidation of ABTS2- inside the vesicles does not occur. Therefore, using PPD and ABTS2- in separate assays allows distinguishing between vesicle-trapped HRP and HRP in the external bulk solution. In this way, the storage stability of HRP-containing POPC vesicles was investigated in terms of HRP leakage and activity of entrapped HRP. It was found that pH 7.0 suspensions of POPC vesicles (2.2 mM POPC) containing on average about 12 HRP molecules per vesicle are stable for at least 1 month without any significant HRP leakage, if stored at 4 °C. Such high stability is beneficial not only for bioanalytical applications but also for exploring the kinetic properties of vesicle-entrapped HRP through simple spectrophotometric absorption measurements with PPD as a sensitive and cheap substrate.


Assuntos
Peroxidase do Rábano Silvestre/análise , Lipossomos/química , Fenilenodiaminas/química , Espectrofotometria , Benzotiazóis/química , Biocatálise , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cinética , Espectrometria de Massas , Oxirredução , Fenilenodiaminas/metabolismo , Fosfatidilcolinas/química , Estabilidade Proteica , Ácidos Sulfônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA