Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38669354

RESUMO

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Assuntos
Anticorpos Monoclonais Humanizados , Malária Falciparum , Adulto , Criança , Feminino , Humanos , Masculino , Relação Dose-Resposta a Droga , Método Duplo-Cego , Doenças Endêmicas/prevenção & controle , Injeções Subcutâneas , Estimativa de Kaplan-Meier , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Mali/epidemiologia , Plasmodium falciparum , Resultado do Tratamento , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Terapia Diretamente Observada , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/uso terapêutico , Adulto Jovem , Pessoa de Meia-Idade
2.
N Engl J Med ; 387(20): 1833-1842, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317783

RESUMO

BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).


Assuntos
Anticorpos Monoclonais Humanizados , Antimaláricos , Malária Falciparum , Adulto , Humanos , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Mali , Plasmodium falciparum , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Cefaleia/induzido quimicamente
3.
Hum Genomics ; 18(1): 40, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650020

RESUMO

BACKGROUND: CYP2C8 is responsible for the metabolism of 5% of clinically prescribed drugs, including antimalarials, anti-cancer and anti-inflammatory drugs. Genetic variability is an important factor that influences CYP2C8 activity and modulates the pharmacokinetics, efficacy and safety of its substrates. RESULTS: We profiled the genetic landscape of CYP2C8 variability using data from 96 original studies and data repositories that included a total of 33,185 unrelated participants across 44 countries and 43 ethnic groups. The reduced function allele CYP2C8*2 was most common in West and Central Africa with frequencies of 16-36.9%, whereas it was rare in Europe and Asia (< 2%). In contrast, CYP2C8*3 and CYP2C8*4 were common throughout Europe and the Americas (6.9-19.8% for *3 and 2.3-7.5% for *4), but rare in African and East Asian populations. Importantly, we observe pronounced differences (> 2.3-fold) between neighboring countries and even between geographically overlapping populations. Overall, we found that 20-60% of individuals in Africa and Europe carry at least one CYP2C8 allele associated with reduced metabolism and increased adverse event risk of the anti-malarial amodiaquine. Furthermore, up to 60% of individuals of West African ancestry harbored variants that reduced the clearance of pioglitazone, repaglinide, paclitaxel and ibuprofen. In contrast, reduced function alleles are only found in < 2% of East Asian and 8.3-12.8% of South and West Asian individuals. CONCLUSIONS: Combined, the presented analyses mapped the genetic and inferred functional variability of CYP2C8 with high ethnogeographic resolution. These results can serve as a valuable resource for CYP2C8 allele frequencies and distribution estimates of CYP2C8 phenotypes that could help identify populations at risk upon treatment with CYP2C8 substrates. The high variability between ethnic groups incentivizes high-resolution pharmacogenetic profiling to guide precision medicine and maximize its socioeconomic benefits, particularly for understudied populations with distinct genetic profiles.


Assuntos
Alelos , Carbamatos , Citocromo P-450 CYP2C8 , Piperidinas , Citocromo P-450 CYP2C8/genética , Humanos , Frequência do Gene/genética , Polimorfismo de Nucleotídeo Único/genética , Europa (Continente) , Tiazolidinedionas/efeitos adversos
4.
Antimicrob Agents Chemother ; 68(5): e0139023, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38546223

RESUMO

Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the KCNH2 gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of KCNH2 variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a KCNH2-specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of KCNH2 variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of KCNH2 and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.


Assuntos
Antimaláricos , Artemisininas , Canal de Potássio ERG1 , Piperazinas , Quinolinas , Humanos , Canal de Potássio ERG1/genética , Antimaláricos/uso terapêutico , Antimaláricos/efeitos adversos , Quinolinas/uso terapêutico , Quinolinas/efeitos adversos , Artemisininas/uso terapêutico , Artemisininas/efeitos adversos , Masculino , Feminino , Adulto , Malária/tratamento farmacológico , Eletrocardiografia , Síndrome do QT Longo/genética , Síndrome do QT Longo/induzido quimicamente , Polimorfismo de Nucleotídeo Único/genética
5.
N Engl J Med ; 385(11): 1005-1017, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432975

RESUMO

BACKGROUND: Malaria control remains a challenge in many parts of the Sahel and sub-Sahel regions of Africa. METHODS: We conducted an individually randomized, controlled trial to assess whether seasonal vaccination with RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria and whether the two interventions combined were superior to either one alone in preventing uncomplicated malaria and severe malaria-related outcomes. RESULTS: We randomly assigned 6861 children 5 to 17 months of age to receive sulfadoxine-pyrimethamine and amodiaquine (2287 children [chemoprevention-alone group]), RTS,S/AS01E (2288 children [vaccine-alone group]), or chemoprevention and RTS,S/AS01E (2286 children [combination group]). Of these, 1965, 1988, and 1967 children in the three groups, respectively, received the first dose of the assigned intervention and were followed for 3 years. Febrile seizure developed in 5 children the day after receipt of the vaccine, but the children recovered and had no sequelae. There were 305 events of uncomplicated clinical malaria per 1000 person-years at risk in the chemoprevention-alone group, 278 events per 1000 person-years in the vaccine-alone group, and 113 events per 1000 person-years in the combination group. The hazard ratio for the protective efficacy of RTS,S/AS01E as compared with chemoprevention was 0.92 (95% confidence interval [CI], 0.84 to 1.01), which excluded the prespecified noninferiority margin of 1.20. The protective efficacy of the combination as compared with chemoprevention alone was 62.8% (95% CI, 58.4 to 66.8) against clinical malaria, 70.5% (95% CI, 41.9 to 85.0) against hospital admission with severe malaria according to the World Health Organization definition, and 72.9% (95% CI, 2.9 to 92.4) against death from malaria. The protective efficacy of the combination as compared with the vaccine alone against these outcomes was 59.6% (95% CI, 54.7 to 64.0), 70.6% (95% CI, 42.3 to 85.0), and 75.3% (95% CI, 12.5 to 93.0), respectively. CONCLUSIONS: Administration of RTS,S/AS01E was noninferior to chemoprevention in preventing uncomplicated malaria. The combination of these interventions resulted in a substantially lower incidence of uncomplicated malaria, severe malaria, and death from malaria than either intervention alone. (Funded by the Joint Global Health Trials and PATH; ClinicalTrials.gov number, NCT03143218.).


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Vacinas Antimaláricas , Malária Falciparum/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Antimaláricos/efeitos adversos , Burkina Faso/epidemiologia , Quimioprevenção , Terapia Combinada , Método Duplo-Cego , Combinação de Medicamentos , Quimioterapia Combinada , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/epidemiologia , Malária Falciparum/mortalidade , Masculino , Mali/epidemiologia , Estações do Ano , Convulsões Febris/etiologia
6.
PLoS Pathog ; 18(9): e1010312, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121873

RESUMO

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.


Assuntos
Doenças Inflamatórias Intestinais , Hanseníase , Humanos , Criança , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Malaui , Mali , Hanseníase/genética , Proteínas de Transporte de Nucleosídeos/genética
7.
BMC Microbiol ; 24(1): 35, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262985

RESUMO

BACKGROUND: Diarrhoea is a public health problem, especially in developing countries where it is the second leading cause of child mortality. In Low Income Countries like in Mali, self-medication and inappropriate use of antibiotics due to the scarcity of complementary diagnostic systems can lead to the development of multidrug-resistant bacteria causing diarrhoea. The objective of this work was to determine the microorganisms responsible for diarrhoea in children under 15 years of age and to characterize their sensitivity to a panel of antibiotics used in a peri-urban community in Mali. The study involved outpatient children visiting the Yirimadio Community Health Centre and diagnosed with diarrhoea. Stool samples from those patients were collected and analysed by conventional stools culture and the susceptibility to antibiotics of detected bacteria was determined by the disc diffusion method in an agar medium. RESULT: Overall, 554 patients were included. Children under the age of 3 years accounted for 88.8% (492 of 554) of our study population. Two bacterial species were isolated in this study, Escherichia coli 31.8% (176 of 554) and Salmonella 2.9% (16 of 554). In the 176, E. coli strains resistance to amoxicillin and to cotrimoxazole was seen in 93.8% (165 of 176) and 92.6% ( 163 of 176), respectively. The ESBL resistance phenotype accounted for 39,8% (70 of 176) of E. coli. Sixteen (16) strains of Salmonella were found, of which one strain (6.3%) was resistant to amoxicillin and to amoxicillin + clavulanic acid. Another one was resistant to chloramphenicol (6.3%). Two strains of Salmonella were resistant to cotrimoxazole (12.5%) and two others were resistant to cefoxitin (12.5%). CONCLUSIONS: The data suggest that E. coli is frequently involved in diarrhoea in children under 3 years of age in this peri-urban setting of Bamako, Mali, with a high rate of resistance to amoxicillin and cotrimoxazole, the most widely used antibiotics in the management of diarrhoea in this setting.


Assuntos
Antibacterianos , Saúde Pública , Criança , Humanos , Pré-Escolar , Mali , Combinação Trimetoprima e Sulfametoxazol , Escherichia coli , Farmacorresistência Bacteriana , Amoxicilina , Diarreia , Combinação Amoxicilina e Clavulanato de Potássio , Salmonella
8.
Malar J ; 23(1): 61, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418982

RESUMO

BACKGROUND: Children are particularly at risk of malaria. This analysis consolidates the clinical data for pyronaridine-artesunate (PA) paediatric granules in children from three randomized clinical trials and a real-world study (CANTAM). METHODS: An integrated safety analysis of individual patient data from three randomized clinical trials included patients with microscopically-confirmed Plasmodium falciparum, body weight ≥ 5 kg to < 20 kg, who received at least one dose of study drug (paediatric safety population). PA was administered once daily for 3 days; two trials included the comparator artemether-lumefantrine (AL). PCR-adjusted day 28 adequate clinical and parasitological response (ACPR) was evaluated. Real-world PA granules safety and effectiveness was also considered. RESULTS: In the integrated safety analysis, 63.9% (95% CI 60.2, 67.4; 426/667) of patients had adverse events following PA and 62.0% (95% CI 56.9, 66.9; 222/358) with AL. Vomiting was more common with PA (7.8% [95% CI 6.0, 10.1; 52/667]) than AL (3.4% [95% CI 1.9, 5.8; 12/358]), relative risk 2.3 (95% CI 1.3, 4.3; P = 0.004), occurring mainly following the first PA dose (6.7%, 45/667), without affecting re-dosing or adherence. Prolonged QT interval occurred less frequently with PA (3.1% [95% CI 2.1, 4.8; 21/667]) than AL (8.1% [95% CI 5.7, 11.4; 29/358]), relative risk 0.39 (95% CI 0.22, 0.67; P = 0.0007). In CANTAM, adverse events were reported for 17.7% (95% CI 16.3, 19.2; 460/2599) of patients, most commonly vomiting (5.4% [95% CI 4.6, 6.4; 141/2599]), mainly following the first dose, (4.5% [117/2599]), with all patients successfully re-dosed, and pyrexia (5.4% [95% CI 4.6, 6.3; 140/2599]). In the two comparative clinical trials, Day 28 ACPR in the per-protocol population for PA was 97.1% (95% CI 94.6, 98.6; 329/339) and 100% (95% CI 99.3, 100; 514/514) versus 98.8% (95% CI 95.7, 99.9; 165/167) and 98.4% (95% CI 95.5, 99.7; 188/191) for AL, respectively. In CANTAM, PA clinical effectiveness was 98.0% (95% CI 97.3, 98.5; 2273/2320). CONCLUSIONS: Anti-malarial treatment with PA paediatric granules administered once daily for 3 days was well tolerated in children and displayed good clinical efficacy in clinical trials, with effectiveness confirmed in a real-world study. Trial registration Clinicaltrials.gov: SP-C-003-05: identifier NCT00331136; SP-C-007-07: identifier NCT0541385; SP-C-021-15: identifier NCT03201770. Pan African Clinical Trials Registry: SP-C-013-11: identifier PACTR201105000286876.


Assuntos
Antimaláricos , Artemisininas , Artesunato , Malária Falciparum , Malária , Naftiridinas , Criança , Humanos , Antimaláricos/efeitos adversos , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/efeitos adversos , Malária Falciparum/tratamento farmacológico , Artemeter/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Malária/tratamento farmacológico , Combinação de Medicamentos , Resultado do Tratamento , Vômito/induzido quimicamente , Vômito/tratamento farmacológico , Etanolaminas/uso terapêutico
9.
Cytokine ; 164: 156137, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773528

RESUMO

Host immunity has been suggested to clear drug-resistant parasites in malaria-endemic settings. However, the immunogenetic mechanisms involved in parasite clearance are poorly understood. Characterizing the host's immunity and genes involved in controlling the parasitic infection can inform the development of blood-stage malaria vaccines. This study investigates host regulatory cytokines and immunogenomic factors associated with the clearance of Plasmodium falciparum carrying a chloroquine resistance genotype. Biological samples from participants of previous drug efficacy trials conducted in two Malian localities were retrieved. The P. falciparum chloroquine resistance transporter (Pfcrt) gene was genotyped using parasite DNA. Children carrying parasites with the mutant allele (Pfcrt-76T) were classified based on their ability to clear their parasites. The levels of the different cytokines were measured in serum. The polymorphisms of specific human genes involved in malaria susceptibility were genotyped using human DNA. The prevalence of the Pfcrt-76T was significantly higher in Kolle than in Bandiagara (81.6 % vs 38.6 %, p < 10-6). The prevalence of children who cleared their mutant parasites was significantly higher in Bandiagara than in Kolle (82.2 % vs 67.4 %, p < 0.05). The genotyping of host genes revealed that IFN-γ -874 T and TNF-α -308A alleles were positively associated with parasite clearance. Cytokine profiling revealed that IFN-γ level was positively associated with parasite clearance (p = 0.04). This study highlights the role of host's immunity and immunogenetic factors to clear resistant parasites, suggesting further characterization of these polymorphisms may help to develop novel approaches to antiparasitic treatment strategies.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Criança , Antimaláricos/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Cloroquina/farmacologia , Malária Falciparum/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/uso terapêutico , Malária/tratamento farmacológico
10.
BMC Infect Dis ; 23(1): 405, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312065

RESUMO

One of the key obstacles to malaria elimination is largely attributed to Plasmodium vivax's ability to form resilient hypnozoites in the host liver that cause relapsing infections. As a result, interruption of P. vivax transmission is difficult. P. vivax transmission occurs in Duffy-positive individuals and have been mainly thought to be absent in Africa. However, increasing studies using molecular tools detected P. vivax among Duffy-negative individuals in various African countries. Studies on the African P. vivax has been severely limited because most of malaria control program focus mainly on falciparum malaria. In addition, there is a scarcity of laboratory infrastructures to overcome the biological obstacles posed by P. vivax. Herein, we established field transmission of Ethiopian P. vivax for routine sporozoite supply followed by liver stage infection in Mali. Furthermore, we evaluated local P. vivax hypnozoites and schizonts susceptibilities to reference antimalarial drugs. The study enabled the assessment of local African P. vivax hypnozoite production dynamics. Our data displayed the ability of the African P. vivax to produce hypnozoite forms ex-vivo at different rates per field isolate. We report that while tafenoquine (1µM) potently inhibited both hypnozoites and schizont forms; atovaquone (0.25µM) and the phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691 (0.5µM) showed no activity against hypnozoites forms. Unlike hypnozoites forms, P. vivax schizont stages were fully susceptible to both atovaquone (0.25µM) and the (PI4K)-specific inhibitor KDU691 (0.5µM). Together, the data revealed the importance of the local platform for further biological investigation and implementation of drug discovery program on the African P. vivax clinical isolates.


Assuntos
Antimaláricos , Malária Vivax , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium vivax , Atovaquona , Malária Vivax/tratamento farmacológico , Mali
11.
Nature ; 542(7639): 101-104, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28117441

RESUMO

Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.


Assuntos
Evolução Molecular , Genoma/genética , Malária/parasitologia , Plasmodium malariae/genética , Plasmodium ovale/genética , Animais , Eritrócitos/parasitologia , Feminino , Genômica , Humanos , Pan troglodytes/parasitologia , Filogenia
12.
Clin Infect Dis ; 75(4): 613-622, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34894221

RESUMO

BACKGROUND: A trial in African children showed that combining seasonal vaccination with the RTS,S/AS01E vaccine with seasonal malaria chemoprevention reduced the incidence of uncomplicated and severe malaria compared with either intervention given alone. Here, we report on the anti-circumsporozoite antibody response to seasonal RTS,S/AS01E vaccination in children in this trial. METHODS: Sera from a randomly selected subset of children collected before and 1 month after 3 priming doses of RTS,S/AS01E and before and 1 month after 2 seasonal booster doses were tested for anti-circumsporozoite antibodies using enzyme-linked immunosorbent assay. The association between post-vaccination antibody titer and incidence of malaria was explored. RESULTS: A strong anti-circumsporozoite antibody response to 3 priming doses of RTS,S/AS01E was seen (geometric mean titer, 368.9 enzyme-linked immunosorbent assay units/mL), but titers fell prior to the first booster dose. A strong antibody response to an annual, pre-malaria transmission season booster dose was observed, but this was lower than after the primary vaccination series and lower after the second than after the first booster dose (ratio of geometric mean rise, 0.66; 95% confidence interval [CI], .57-.77). Children whose antibody response was in the upper tercile post-vaccination had a lower incidence of malaria during the following year than children in the lowest tercile (hazard ratio, 0.43; 95% CI, .28-.66). CONCLUSIONS: Seasonal vaccination with RTS,S/AS01E induced a strong booster antibody response that was lower after the second than after the first booster dose. The diminished antibody response to the second booster dose was not associated with diminished efficacy. CLINICAL TRIALS REGISTRATION: NCT03143218.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Formação de Anticorpos , Criança , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Estações do Ano , Vacinação
13.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36321830

RESUMO

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malária Falciparum/prevenção & controle , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico
14.
Malar J ; 21(1): 61, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193586

RESUMO

The addition of a third anti-malarial drug matching the pharmacokinetic characteristics of the slowly eliminated partner drug in artemisinin-based combination therapy (ACT) has been proposed as new therapeutic paradigm for the treatment of uncomplicated falciparum malaria. These triple artemisinin-based combination therapy (TACT) should in theory more effectively prevent the development and spread of multidrug resistance than current ACT. Several clinical trials evaluating TACT-or other multidrug anti-malarial combination therapy (MDACT)-have been reported and more are underway. From a regulatory perspective, these clinical development programmes face a strategic dilemma: pivotal clinical trials evaluating TACT are designed to test for non-inferiority of efficacy compared to standard ACT as primary endpoint. While meeting the endpoint of non-inferior efficacy, TACT are consistently associated with a slightly higher frequency of adverse drug reactions than currently used ACT. Moreover, the prevention of the selection of specific drug resistance-one of the main reasons for TACT development-is beyond the scope of even large-scale clinical trials. This raises important questions: if equal efficacy is combined with poorer tolerability, how can then the actual benefit of these drug combinations be demonstrated? How should clinical development plans be conceived to provide objective evidence for or against an improved management of patients and effective prevention of anti-malarial drug resistance by TACT? What are the objective criteria to ultimately convince regulators to approve these new products? In this Opinion paper, the authors discuss the challenges for the clinical development of triple and multidrug anti-malarial combination therapies and the hard choices that need to be taken in the further clinical evaluation and future implementation of this new treatment paradigm.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Ensaios Clínicos como Assunto , Combinação de Medicamentos , Resistência a Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum
15.
Malar J ; 21(1): 39, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135546

RESUMO

BACKGROUND: In 2012, seasonal malaria chemoprevention (SMC) was recommended as policy for malaria control by the World Health Organization (WHO) in areas of highly seasonal malaria transmission across the Sahel sub-region in Africa along with monitoring of drug resistance. We assessed the long-term impact of SMC on Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) over a 3-year period of SMC implementation in the health district of Ouelessebougou, Mali. METHODS: In 8 randomly selected sub-districts of Ouelessebougou, Mali, children aged 0-5 years were randomly selected during cross-sectional surveys at baseline (August 2014) and 1, 2 and 3 years post-SMC, at the beginning and end of the malaria transmission season. Blood smears and blood spots on filter paper were obtained and frequencies of mutation in P. falciparum genes related to resistance to SP and AQ (Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt) were assessed by PCR amplification on individual samples and PCR amplification followed by deep sequencing on pooled (by site and year) samples. RESULTS: At each survey, approximately 50-100 individual samples were analysed by PCR amplification and a total of 1,164 samples were analysed by deep sequencing with an average read depth of 18,018-36,918 after pooling by site and year. Most molecular markers of resistance did not increase in frequency over the period of study (2014-2016). After 3 years of SMC, the frequencies of Pfdhps 540E, Pfdhps 437G and Pfcrt K76T remained similar compared to baseline (4.0 vs 1.4%, p = 0.41; 74.5 vs 64.6%, p = 0.22; 71.3 vs 67.4%, p = 0.69). Nearly all samples tested carried Pfdhfr 59R, and this proportion remained similar 3 years after SMC implementation (98.8 vs 100%, p = 1). The frequency of Pfmdr1 N86Y increased significantly over time from 5.6% at baseline to 18.6% after 3 years of SMC (p = 0.016). Results of pooled analysis using deep sequencing were consistent with those by individual analysis with standard PCR, but also indicated for the first time the presence of mutations at the Pfdhps A581G allele at a frequency of 11.7% after 2 years of SMC, as well as the Pfdhps I431V allele at frequencies of 1.6-9.3% following 1 and 2 years of SMC, respectively. CONCLUSION: Two and 3 years of SMC implementation were associated with increased frequency of the Pfmdr1 N86Y mutation but not Pfdhps 540E, Pfdhps 437G and Pfcrt K76T. The first-time detection of the Pfdhps haplotype bearing the I431V and A581G mutations in Mali, even at low frequency, warrants further long-term surveillance.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Combinação de Medicamentos , Resistência a Medicamentos/genética , Humanos , Lactente , Recém-Nascido , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Mali , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Estações do Ano , Sulfadoxina/farmacologia
16.
Malar J ; 21(1): 59, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193608

RESUMO

BACKGROUND: A recent trial in Burkina Faso and Mali showed that combining seasonal RTS,S/AS01E malaria vaccination with seasonal malaria chemoprevention (SMC) substantially reduced the incidence of uncomplicated and severe malaria in young children compared to either intervention alone. Given the possible negative effect of malaria on nutrition, the study investigated whether these children also experienced lower prevalence of acute and chronic malnutrition. METHODS: In Burkina Faso and Mali 5920 children were randomized to receive either SMC alone, RTS,S/AS01E alone, or SMC combined with RTS,S/AS01E for three malaria transmission seasons (2017-2019). After each transmission season, anthropometric measurements were collected from all study children at a cross-sectional survey and used to derive nutritional status indicators, including the binary variables wasted and stunted (weight-for-height and height-for-age z-scores below - 2, respectively). Binary and continuous outcomes between treatment groups were compared by Poisson and linear regression. RESULTS: In 2017, compared to SMC alone, the combined intervention reduced the prevalence of wasting by approximately 12% [prevalence ratio (PR) = 0.88 (95% CI 0.75, 1.03)], and approximately 21% in 2018 [PR = 0.79 (95% CI 0.62, 1.01)]. Point estimates were similar for comparisons with RTS,S/AS01E, but there was stronger evidence of a difference. There was at least a 30% reduction in the point estimates for the prevalence of severe wasting in the combined group compared to the other two groups in 2017 and 2018. There was no difference in the prevalence of moderate or severe wasting between the groups in 2019. The prevalence of stunting, low-MUAC-for-age or being underweight did not differ between groups for any of the three years. The prevalence of severe stunting was higher in the combined group compared to both other groups in 2018, and compared to RTS,S/AS01E alone in 2017; this observation does not have an obvious explanation and may be a chance finding. Overall, malnutrition was very common in this cohort, but declined over the study as the children became older. CONCLUSIONS: Despite a high burden of malnutrition and malaria in the study populations, and a major reduction in the incidence of malaria in children receiving both interventions, this had only a modest impact on nutritional status. Therefore, other interventions are needed to reduce the high burden of malnutrition in these areas. TRIAL REGISTRATION: https://www.clinicaltrials.gov/ct2/show/NCT03143218 , registered 8th May 2017.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Burkina Faso/epidemiologia , Quimioprevenção , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Mali/epidemiologia , Estado Nutricional , Estações do Ano , Vacinação
17.
PLoS Med ; 18(9): e1003766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492005

RESUMO

BACKGROUND: Amodiaquine is a 4-aminoquinoline antimalarial similar to chloroquine that is used extensively for the treatment and prevention of malaria. Data on the cardiovascular effects of amodiaquine are scarce, although transient effects on cardiac electrophysiology (electrocardiographic QT interval prolongation and sinus bradycardia) have been observed. We conducted an individual patient data meta-analysis to characterise the cardiovascular effects of amodiaquine and thereby support development of risk minimisation measures to improve the safety of this important antimalarial. METHODS AND FINDINGS: Studies of amodiaquine for the treatment or prevention of malaria were identified from a systematic review. Heart rates and QT intervals with study-specific heart rate correction (QTcS) were compared within studies and individual patient data pooled for multivariable linear mixed effects regression. The meta-analysis included 2,681 patients from 4 randomised controlled trials evaluating artemisinin-based combination therapies (ACTs) containing amodiaquine (n = 725), lumefantrine (n = 499), piperaquine (n = 716), and pyronaridine (n = 566), as well as monotherapy with chloroquine (n = 175) for uncomplicated malaria. Amodiaquine prolonged QTcS (mean = 16.9 ms, 95% CI: 15.0 to 18.8) less than chloroquine (21.9 ms, 18.3 to 25.6, p = 0.0069) and piperaquine (19.2 ms, 15.8 to 20.5, p = 0.0495), but more than lumefantrine (5.6 ms, 2.9 to 8.2, p < 0.001) and pyronaridine (-1.2 ms, -3.6 to +1.3, p < 0.001). In individuals aged ≥12 years, amodiaquine reduced heart rate (mean reduction = 15.2 beats per minute [bpm], 95% CI: 13.4 to 17.0) more than piperaquine (10.5 bpm, 7.7 to 13.3, p = 0.0013), lumefantrine (9.3 bpm, 6.4 to 12.2, p < 0.001), pyronaridine (6.6 bpm, 4.0 to 9.3, p < 0.001), and chloroquine (5.9 bpm, 3.2 to 8.5, p < 0.001) and was associated with a higher risk of potentially symptomatic sinus bradycardia (≤50 bpm) than lumefantrine (risk difference: 14.8%, 95% CI: 5.4 to 24.3, p = 0.0021) and chloroquine (risk difference: 8.0%, 95% CI: 4.0 to 12.0, p < 0.001). The effect of amodiaquine on the heart rate of children aged <12 years compared with other antimalarials was not clinically significant. Study limitations include the unavailability of individual patient-level adverse event data for most included participants, but no serious complications were documented. CONCLUSIONS: While caution is advised in the use of amodiaquine in patients aged ≥12 years with concomitant use of heart rate-reducing medications, serious cardiac conduction disorders, or risk factors for torsade de pointes, there have been no serious cardiovascular events reported after amodiaquine in widespread use over 7 decades. Amodiaquine and structurally related antimalarials in the World Health Organization (WHO)-recommended dose regimens alone or in ACTs are safe for the treatment and prevention of malaria.


Assuntos
Amodiaquina/efeitos adversos , Antimaláricos/efeitos adversos , Bradicardia/induzido quimicamente , Sistema de Condução Cardíaco/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Adolescente , Adulto , Bradicardia/diagnóstico , Bradicardia/fisiopatologia , Cardiotoxicidade , Criança , Pré-Escolar , Feminino , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Lactente , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Fatores de Risco , Adulto Jovem
18.
Antimicrob Agents Chemother ; 65(8): e0087321, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34060901

RESUMO

A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina , Burkina Faso , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Humanos , Malária Falciparum/tratamento farmacológico , Mali , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Falha de Tratamento
19.
J Antimicrob Chemother ; 76(8): 2079-2087, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34021751

RESUMO

OBJECTIVES: To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS: We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS: We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS: Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Estudos Transversais , Humanos , Malária Falciparum/tratamento farmacológico , Mali , Plasmodium falciparum , Plasmodium malariae , Estudos Prospectivos
20.
Malar J ; 20(1): 356, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461901

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) was deployed in 2005 as an alternative to chloroquine and is considered the most efficacious treatment currently available for uncomplicated falciparum malaria. While widespread artemisinin resistance has not been reported to date in Africa, recent studies have reported partial resistance in Rwanda. The purpose of this study is to provide a current systematic review and meta-analysis on ACT at Mali study sites, where falciparum malaria is highly endemic. METHODS: A systematic review of the literature maintained in the bibliographic databases accessible through the PubMed, ScienceDirect and Web of Science search engines was performed to identify research studies on ACT occurring at Mali study sites. Selected studies included trials occurring at Mali study sites with reported polymerase chain reaction (PCR)-corrected adequate clinical and parasite response rates (ACPRcs) at 28 days. Data were stratified by treatment arm (artemether-lumefantrine (AL), the first-line treatment for falciparum malaria in Mali and non-AL arms) and analysed using random-effects, meta-analysis approaches. RESULTS: A total of 11 studies met the inclusion criteria, and a risk of bias assessment carried out by two independent reviewers determined low risk of bias among all assessed criteria. The ACPRc for the first-line AL at Mali sites was 99.0% (95% CI (98.3%, 99.8%)), while the ACPRc among non-AL treatment arms was 98.9% (95% CI (98.3%, 99.5%)). The difference in ACPRcs between non-AL treatment arms and AL treatment arms was not statistically significant (p = .752), suggesting that there are potential treatment alternatives beyond the first-line of AL in Mali. CONCLUSIONS: ACT remains highly efficacious in treating uncomplicated falciparum malaria in Mali. Country-specific meta-analyses on ACT are needed on an ongoing basis for monitoring and evaluating drug efficacy patterns to guide local malaria treatment policies, particularly in the wake of observed artemisinin resistance in Southeast Asia and partial resistance in Rwanda.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Humanos , Mali
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA