Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Entropy (Basel) ; 26(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667859

RESUMO

An entanglement-based continuous variable (CV) QKD scheme is proposed, performing information reconciliation over an entanglement-assisted link. The same entanglement generation source is used in both raw key transmission and information reconciliation. The entanglement generation source employs only low-cost devices operated in the C-band. The proposed CV-QKD scheme with information reconciliation over an entanglement-assisted link significantly outperforms the corresponding CV-QKD scheme with information reconciliation over an authenticated public channel. It also outperforms the CV-QKD scheme in which a classical free-space optical communication link is used to perform information reconciliation. An experimental demonstration over the free-space optical testbed established at the University of Arizona campus indicates that the proposed CV-QKD can operate in strong turbulence regimes. To improve the secret key rate performance further, adaptive optics is used.

2.
Opt Express ; 31(24): 39765-39783, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041292

RESUMO

The use of pre-shared entanglement in entanglement-assisted communication offers a superior alternative to classical communication, especially in the photon-starved regime and highly noisy environments. In this paper, we analyze the performance of several low-complexity receivers that use optical parametric amplifiers. The simulations demonstrate that receivers employing an entanglement-assisted scheme with phase-shift-keying modulation can outperform classical capacities. We present a 2x2 optical hybrid receiver for entanglement-assisted communication and show that it has a roughly 10% lower error probability compared to previously proposed optical parametric amplifier-based receivers for more than 10 modes. However, the capacity of the optical parametric amplifier-based receiver exceeds the Holevo capacity and the capacities of the optical phase conjugate receiver and 2x2 optical hybrid receiver in the case of a single mode. The numerical findings indicate that surpassing the Holevo and Homodyne capacities does not require a large number of signal-idler modes. Furthermore, we find that using unequal priors for BPSK provides roughly three times the information rate advantage over equal priors.

3.
Opt Express ; 31(24): 39906-39916, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041303

RESUMO

To improve the reliability of entanglement-assisted (EA) communication over turbulent FSO channels we propose to perform the optical phase-conjugation on idler photons rather than turbulence affected signal photons and use adaptive optics. We experimentally demonstrate that reliable EA communication over outdoor 1.45 km FSO link, established at University of Arizona campus, is possible in strong turbulence regime.

4.
Opt Express ; 31(6): 10936-10946, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157628

RESUMO

We evaluate the burst-error performance of the regular low-density parity-check (LDPC) code and the irregular LDPC code that has been considered for ITU-T's 50G-PON standard via experimental measurements in FPGA. By using intra codeword interleaving and parity-check matrix rearrangement, we demonstrate that the BER performance can be improved under ∼44-ns-duration burst errors for 50-Gb/s upstream signals.

5.
Sensors (Basel) ; 22(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270961

RESUMO

The growing data demands are pushing researchers to pay more attention to spectrally efficient modulation formats. The four-dimensional (4D) signal constellation modulation format has been investigated for metro networks' applications to achieve better power efficiency. To cope with such modulation formats, the requirement of better digital signal processing (DSP) is also increasing rapidly. More complicated DSPs bring us extra costs; thus, the DSP-free coherent receivers are also investigated because of the high-power consumption of conventional DSP-based receivers, but the transceivers upgrading also results in extra costs. In this invited paper we implement a 4-dimentional modulation format based on Slepian sequences. We applied LDPC coding and experimentally investigated the BER performance in a two-dimensional (2D) 40 km fiber link transmission and demonstrate that being error free is possible without employing the complicated DSP. We compared our proposed modulation scheme with regular 16QAM and found it outperforms 16QAM with DSP over back-to-back transmission by 3.8 dB improvement in OSNR when BER = 10-5, while over 40 km metro network communication link our proposed 4D modulation signals are still successfully transmitted, and the LDPC-coding still works properly with such a new transmission strategy. On the other hand, DSP-free transmission of LDPC-coded 16-QAM exhibits an early error floor phenomenon.

6.
Entropy (Basel) ; 24(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35741476

RESUMO

With the help of entanglement, we can build quantum sensors with sensitivity better than that of classical sensors. In this paper we propose an entanglement assisted (EA) joint monostatic-bistatic quantum radar scheme, which significantly outperforms corresponding conventional radars. The proposed joint monostatic-bistatic quantum radar is composed of two radars, one having both wideband entangled source and EA detector, and the second one with only an EA detector. The optical phase conjugation (OPC) is applied on the transmitter side, while classical coherent detection schemes are applied in both receivers. The joint monostatic-bistatic integrated EA transmitter is proposed suitable for implementation in LiNbO3 technology. The detection probability of the proposed EA joint target detection scheme outperforms significantly corresponding classical, coherent states-based quantum detection, and EA monostatic detection schemes. The proposed EA joint target detection scheme is evaluated by modelling the direct radar return and forward scattering channels as both lossy and noisy Bosonic channels, and assuming that the distribution of entanglement over idler channels is not perfect.

7.
Entropy (Basel) ; 24(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35885158

RESUMO

The growth of data-driven technologies, 5G, and the Internet pose enormous pressure on underlying information infrastructure [...].

8.
Entropy (Basel) ; 24(7)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35885213

RESUMO

Entanglement-based quantum sensors have much better sensitivity than corresponding classical sensors in a noisy and lossy regime. In our recent paper, we showed that the entanglement-assisted (EA) joint monostatic-bistatic quantum radar performs much better than conventional radars. Here, we propose an entanglement-assisted (EA) multistatic radar that significantly outperforms EA bistatic, coherent state-based quantum, and classical radars. The proposed EA multistatic radar employs multiple entangled transmitters performing transmit-side optical phase conjugation, multiple coherent detection-based receivers serving as EA detectors, and a joint detector.

9.
Entropy (Basel) ; 23(8)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34441090

RESUMO

Traditionally, the study of quantum key distribution (QKD) assumes an omnipotent eavesdropper that is only limited by the laws of physics. However, this is not the case for specific application scenarios such as the QKD over a free-space link. In this invited paper, we introduce the geometrical optics restricted eavesdropping model for secret key distillation security analysis and apply to a few scenarios common in satellite-to-satellite applications.

10.
Entropy (Basel) ; 23(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441143

RESUMO

Quantum key distribution (QKD) assures the theoretical information security from the physical layer by safely distributing true random numbers to the communication parties as secret keys while assuming an omnipotent eavesdropper (Eve). In recent years, with the growing applications of QKD in realistic channels such as satellite-based free-space communications, certain conditions such as the unlimited power collection ability of Eve become too strict for security analysis. Thus, in this invited paper, we give a brief overview of the quantum key distribution with a geometrical optics restricted power collection ability of Eve with its potential applications.

11.
Entropy (Basel) ; 23(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206138

RESUMO

The measures of information transfer which correspond to non-additive entropies have intensively been studied in previous decades. The majority of the work includes the ones belonging to the Sharma-Mittal entropy class, such as the Rényi, the Tsallis, the Landsberg-Vedral and the Gaussian entropies. All of the considerations follow the same approach, mimicking some of the various and mutually equivalent definitions of Shannon information measures, and the information transfer is quantified by an appropriately defined measure of mutual information, while the maximal information transfer is considered as a generalized channel capacity. However, all of the previous approaches fail to satisfy at least one of the ineluctable properties which a measure of (maximal) information transfer should satisfy, leading to counterintuitive conclusions and predicting nonphysical behavior even in the case of very simple communication channels. This paper fills the gap by proposing two parameter measures named the α-q-mutual information and the α-q-capacity. In addition to standard Shannon approaches, special cases of these measures include the α-mutual information and the α-capacity, which are well established in the information theory literature as measures of additive Rényi information transfer, while the cases of the Tsallis, the Landsberg-Vedral and the Gaussian entropies can also be accessed by special choices of the parameters α and q. It is shown that, unlike the previous definition, the α-q-mutual information and the α-q-capacity satisfy the set of properties, which are stated as axioms, by which they reduce to zero in the case of totally destructive channels and to the (maximal) input Sharma-Mittal entropy in the case of perfect transmission, which is consistent with the maximum likelihood detection error. In addition, they are non-negative and less than or equal to the input and the output Sharma-Mittal entropies, in general. Thus, unlike the previous approaches, the proposed (maximal) information transfer measures do not manifest nonphysical behaviors such as sub-capacitance or super-capacitance, which could qualify them as appropriate measures of the Sharma-Mittal information transfer.

12.
Opt Express ; 28(25): 37129-37148, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379553

RESUMO

Conventionally, unconditional information security has been studied by quantum cryptography although the assumption of an omnipotent eavesdropper is too strict for some realistic implementations. In this paper, we study the realistic secret key distillation over a satellite-to-satellite free space optics channel where we assume a limited-sized aperture eavesdropper (Eve) in the same plane of the legitimate receiver (Bob) and determine the secret key rate (SKR) lower bounds correspondingly. We first study the input power dependency without assumptions on Bob's detection scheme before optimizing the input power to determine lower bounds as functions of transmission distances, center frequency or Eve aperture radius. Then we calculate analytical expressions regarding the SKR lower bound and upper bound as transmission distance goes to infinity. We also incorporate specific discrete variable (DV) and continuous variable (CV) protocols for comparison. We demonstrate that significantly higher SKR lower bounds can be achieved compared to traditional unrestricted Eve scenario.

13.
Entropy (Basel) ; 22(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-33286602

RESUMO

Research in quantum communications networks (QCNs), where multiple users desire to generate or transmit common quantum-secured information, is still in its beginning stage. To solve for the problems of both discrete variable- and continuous variable-quantum key distribution (QKD) schemes in a simultaneous manner as well as to enable the next generation of quantum communication networking, in this Special Issue paper we describe a scenario where disconnected terrestrial QCNs are coupled through low Earth orbit (LEO) satellite quantum network forming heterogeneous satellite-terrestrial QCN. The proposed heterogeneous QCN is based on the cluster state approach and can be used for numerous applications, including: (i) to teleport arbitrary quantum states between any two nodes in the QCN; (ii) to enable the next generation of cyber security systems; (iii) to enable distributed quantum computing; and (iv) to enable the next generation of quantum sensing networks. The proposed QCNs will be robust against various channel impairments over heterogeneous links. Moreover, the proposed QCNs will provide an unprecedented security level for 5G+/6G wireless networks, Internet of Things (IoT), optical networks, and autonomous vehicles, to mention a few.

14.
Entropy (Basel) ; 22(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33286829

RESUMO

In this paper, we propose the surface codes (SCs)-based multipartite quantum communication networks (QCNs). We describe an approach that enables us to simultaneously entangle multiple nodes in an arbitrary network topology based on the SCs. We also describe how to extend the transmission distance between arbitrary two nodes by using the SCs. The numerical results indicate that transmission distance between nodes can be extended to beyond 1000 km by employing simple syndrome decoding. Finally, we describe how to operate the proposed QCN by employing the software-defined networking (SDN) concept.

15.
Opt Express ; 27(3): 3055-3064, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732332

RESUMO

Due to the absorption of water, communication between two parties submersed below the water is normally performed with acoustic waves. However, with the need for higher data rates, the use of RF or optical frequencies is needed. Currently, optical wavelengths have been demonstrated for classical communication over short distances. For these short distances, if a large amount of data needs to be transmitted securely, it is not feasible for both parties to return to the surface to communicate. Additionally, it can be assumed that a third party (Eve) is located in the channel trying to gather information. The solution is to use quantum key distribution (QKD) to generate the secure key, allowing the parties to continuously encrypt and transmit the data. It is assumed the BB84 protocol using pairs of polarization entangled photons generated from a spontaneous parametric down conversion (SPDC) source of Type-II. By using entangled photons, Eve is not able to gain information without being detected. In this work, horizontal oceanic channel is studied for various distances ranging from 10 m to 100 m, depth ranging from 100 m to 200 m, and surface chlorophyll-a concentrations at a wavelength of 532 nm. The secure key rates are calculated, assuming that a low-density parity check (LDPC) error correction code is used for information reconciliation. The maximum secure key rate and optimal number of average entangled photons transmitted are then studied for the various channels.

16.
Opt Express ; 27(3): 3422-3428, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732362

RESUMO

In this paper, we propose a unified field-programmable gate array (FPGA) structure for a rate-adaptive forward error correction (FEC) scheme based on spatially coupled (SC) LDPC codes derived from quasi-cyclic (QC) LDPC codes. We described the unified decoder structure in detail and showed that the rate adaptation can be achieved by a controller on-the-fly. By FPGA based emulation, the results show that, with comparable complexity, the SC codes provide larger coding gain. The implemented unified structure can be employed for any template QC-LDPC code to achieve a spatially-coupling based code-rate adaptation scheme.

17.
Opt Lett ; 44(3): 687-690, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702711

RESUMO

The information that is leaked to an eavesdropper during the error reconciliation phase of quantum key distribution (QKD) protocols limits the maximum bit error rate (BER) of a system. In a standard QKD protocol, parity bits are transmitted over an authenticated noiseless channel, to which Eve has access. This Letter presents the concept of using a covert classical communication channel to transmit the parity bits between Alice and Bob without Eve gaining information of the transmitted parity bits. This allows for higher secure key generation rates and operation of a QKD system in which the BER exceeds the limit of the standard protocol. This concept is then applied to a practical free-space optical system that contains multiple parallel channels, where channel loss, crosstalk, atmospheric turbulence effects, and noise are considered.

18.
Appl Opt ; 58(29): 8061-8068, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31674361

RESUMO

The increasing prevalence of satellite-to-ground laser communications necessitates unconditional security measures that so far can only be provided by quantum key distribution. However, in a free-space optical channel, the diffraction of laser beams along with turbulence effects can reduce the initially high secure key rates potentially provided by continuous variable quantum key distribution (CV-QKD). Using derived formulas from four-state discrete modulation CV-QKD with reverse reconciliation, we highlight parameters that yield key rates on the order of 50 Mbps, and then describe the possible factors that can cause its reduction in a free-space optical channel. Numerical beam propagation simulations are performed to supplement the analyses.

19.
Opt Express ; 26(8): 10188-10202, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715959

RESUMO

Recent simulations and experiments have shown that the viscous-range temperature spectrum in water can be well described by the Kraichnan spectral model. Motivated by this, a tractable expression is developed for the underwater temperature spectrum that is consistent with both the Obukhov-Corrsin law in the inertial range and the Kraichnan model in the viscous range. In analogy with the temperature spectrum, the formula for the salinity spectrum and the temperature-salinity co-spectrum are also derived. The linear combination of these three scalar spectra constitutes a new form of the refractivity spectrum. This spectral model predicts a much stronger optical scintillation than the previous model.

20.
Opt Express ; 26(22): 29319-29329, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470097

RESUMO

In this paper, we proposed a class of large-girth QC-LDPC codes designed to maximize the girth property with code rates ranging from 0.5 to 0.8, which leads to well-structured parity-check matrix and generator matrix. Instead of implementing several FEC encoder and decoder engines in hardware, we design an efficient unified FPGA-based architecture enabling run-time reconfigurable capability. Apart from four principle LDPC codes being incorporated into a unified design, shortening is adopted to bridge the rate gap between principle codes. With our proposed unified LDPC engine, the signal-to-noise ratio (SNR) limits of -1 dB to 2.2 dB have been demonstrated at BER of 10-12 in additive white Gaussian noise (AWGN) channel by FPGA emulation. It is desirable for the application to both free-space optical (FSO) and fiber optics communications. Large code rate range is preferred to deal with various channel impairments. To further verify the proposed unified code engine for FSO applications, we tested the scheme through a spatial light modulator (SLM)-based FSO channel emulator. We showed that in medium atmospheric turbulence regime, a post-FEC BER below 10-8 can be achieved without any interleaver and adaptive optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA