Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 51(D1): D1220-D1229, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305829

RESUMO

The Chemical Functional Ontology (ChemFOnt), located at https://www.chemfont.ca, is a hierarchical, OWL-compatible ontology describing the functions and actions of >341 000 biologically important chemicals. These include primary metabolites, secondary metabolites, natural products, food chemicals, synthetic food additives, drugs, herbicides, pesticides and environmental chemicals. ChemFOnt is a FAIR-compliant resource intended to bring the same rigor, standardization and formal structure to the terms and terminology used in biochemistry, food chemistry and environmental chemistry as the gene ontology (GO) has brought to molecular biology. ChemFOnt is available as both a freely accessible, web-enabled database and a downloadable Web Ontology Language (OWL) file. Users may download and deploy ChemFOnt within their own chemical databases or integrate ChemFOnt into their own analytical software to generate machine readable relationships that can be used to make new inferences, enrich their omics data sets or make new, non-obvious connections between chemicals and their direct or indirect effects. The web version of the ChemFOnt database has been designed to be easy to search, browse and navigate. Currently ChemFOnt contains data on 341 627 chemicals, including 515 332 terms or definitions. The functional hierarchy for ChemFOnt consists of four functional 'aspects', 12 functional super-categories and a total of 173 705 functional terms. In addition, each of the chemicals are classified into 4825 structure-based chemical classes. ChemFOnt currently contains 3.9 million protein-chemical relationships and ∼10.3 million chemical-functional relationships. The long-term goal for ChemFOnt is for it to be adopted by databases and software tools used by the general chemistry community as well as the metabolomics, exposomics, metagenomics, genomics and proteomics communities.


Assuntos
Bases de Dados de Compostos Químicos , Software , Bases de Dados Factuais , Ontologia Genética , Genômica , Proteômica
2.
Nucleic Acids Res ; 50(W1): W115-W123, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536252

RESUMO

BioTransformer 3.0 (https://biotransformer.ca) is a freely available web server that supports accurate, rapid and comprehensive in silico metabolism prediction. It combines machine learning approaches with a rule-based system to predict small-molecule metabolism in human tissues, the human gut as well as the external environment (soil and water microbiota). Simply stated, BioTransformer takes a molecular structure as input (SMILES or SDF) and outputs an interactively sortable table of the predicted metabolites or transformation products (SMILES, PNG images) along with the enzymes that are predicted to be responsible for those reactions and richly annotated downloadable files (CSV and JSON). The entire process typically takes less than a minute. Previous versions of BioTransformer focused exclusively on predicting the metabolism of xenobiotics (such as plant natural products, drugs, cosmetics and other synthetic compounds) using a limited number of pre-defined steps and somewhat limited rule-based methods. BioTransformer 3.0 uses much more sophisticated methods and incorporates new databases, new constraints and new prediction modules to not only more accurately predict the metabolic transformation products of exogenous xenobiotics but also the transformation products of endogenous metabolites, such as amino acids, peptides, carbohydrates, organic acids, and lipids. BioTransformer 3.0 can also support customized sequential combinations of these transformations along with multiple iterations to simulate multi-step human biotransformation events. Performance tests indicate that BioTransformer 3.0 is 40-50% more accurate, far less prone to combinatorial 'explosions' and much more comprehensive in terms of metabolite coverage/capabilities than previous versions of BioTransformer.


Assuntos
Biologia Computacional , Xenobióticos , Humanos , Biologia Computacional/métodos , Biotransformação , Bases de Dados Factuais , Estrutura Molecular , Xenobióticos/metabolismo
3.
Nucleic Acids Res ; 45(D1): D440-D445, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899612

RESUMO

YMDB or the Yeast Metabolome Database (http://www.ymdb.ca/) is a comprehensive database containing extensive information on the genome and metabolome of Saccharomyces cerevisiae Initially released in 2012, the YMDB has gone through a significant expansion and a number of improvements over the past 4 years. This manuscript describes the most recent version of YMDB (YMDB 2.0). More specifically, it provides an updated description of the database that was previously described in the 2012 NAR Database Issue and it details many of the additions and improvements made to the YMDB over that time. Some of the most important changes include a 7-fold increase in the number of compounds in the database (from 2007 to 16 042), a 430-fold increase in the number of metabolic and signaling pathway diagrams (from 66 to 28 734), a 16-fold increase in the number of compounds linked to pathways (from 742 to 12 733), a 17-fold increase in the numbers of compounds with nuclear magnetic resonance or MS spectra (from 783 to 13 173) and an increase in both the number of data fields and the number of links to external databases. In addition to these database expansions, a number of improvements to YMDB's web interface and its data visualization tools have been made. These additions and improvements should greatly improve the ease, the speed and the quantity of data that can be extracted, searched or viewed within YMDB. Overall, we believe these improvements should not only improve the understanding of the metabolism of S. cerevisiae, but also allow more in-depth exploration of its extensive metabolic networks, signaling pathways and biochemistry.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Metaboloma , Metabolômica , Software , Leveduras/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Navegador
4.
J Chem Inf Model ; 58(6): 1282-1291, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29738669

RESUMO

In silico metabolism prediction requires first predicting whether a specific molecule will interact with one or more specific metabolizing enzymes, then predicting the result of each enzymatic reaction. Here, we provide a computational tool, CypReact, for performing this first task of reactant prediction. Specifically, CypReact takes as input an arbitrary molecule (specified as a SMILES string or a standard SDF file) and any one of the nine of the most important human cytochrome P450 (CYP450) enzymes-CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, or CYP3A4-and accurately predicts whether the query molecule will react with that given CYP450 enzyme. Tests of CypReact, conducted over a data set of 1632 molecules (each considered a "plausible" reactant) show that it is very effective, with a (cross-validation) AUROC (area under the receiver operating characteristic curve) of 0.83-0.92. We also show that CypReact performs significantly better than other reactant prediction tools such as ADMET Predictor and (a reactant-predicting extension of) SMARTCyp, whose average AUROCs are 0.75 and 0.53, respectively. We then applied the learned CypReact models to a previously unseen set of molecules and found that our CypReact did even better and still significantly surpassed the performance of SMARTCyp and ADMET Predictor. These results suggest that CypReact could be an important component of a suite of in silico metabolism prediction tools for accurately predicting the products of Phase I, Phase II, and microbial metabolism in humans. CypReact is available at https://bitbucket.org/Leon_Ti/cypreact .


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Algoritmos , Simulação por Computador , Descoberta de Drogas , Humanos , Modelos Biológicos , Software
5.
Front Chem ; 11: 1292027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093816

RESUMO

The global cost-benefit analysis of pesticide use during the last 30 years has been characterized by a significant increase during the period from 1990 to 2007 followed by a decline. This observation can be attributed to several factors including, but not limited to, pest resistance, lack of novelty with respect to modes of action or classes of chemistry, and regulatory action. Due to current and projected increases of the global population, it is evident that the demand for food, and consequently, the usage of pesticides to improve yields will increase. Addressing these challenges and needs while promoting new crop protection agents through an increasingly stringent regulatory landscape requires the development and integration of infrastructures for innovative, cost- and time-effective discovery and development of novel and sustainable molecules. Significant advances in artificial intelligence (AI) and cheminformatics over the last two decades have improved the decision-making power of research scientists in the discovery of bioactive molecules. AI- and cheminformatics-driven molecule discovery offers the opportunity of moving experiments from the greenhouse to a virtual environment where thousands to billions of molecules can be investigated at a rapid pace, providing unbiased hypothesis for lead generation, optimization, and effective suggestions for compound synthesis and testing. To date, this is illustrated to a far lesser extent in the publicly available agrochemical research literature compared to drug discovery. In this review, we provide an overview of the crop protection discovery pipeline and how traditional, cheminformatics, and AI technologies can help to address the needs and challenges of agrochemical discovery towards rapidly developing novel and more sustainable products.

6.
Environ Sci Eur ; 34(1): 104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36284750

RESUMO

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

7.
J Cheminform ; 13(1): 64, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488889

RESUMO

We report the major conclusions of the online open-access workshop "Computational Applications in Secondary Metabolite Discovery (CAiSMD)" that took place from 08 to 10 March 2021. Invited speakers from academia and industry and about 200 registered participants from five continents (Africa, Asia, Europe, South America, and North America) took part in the workshop. The workshop highlighted the potential applications of computational methodologies in the search for secondary metabolites (SMs) or natural products (NPs) as potential drugs and drug leads. During 3 days, the participants of this online workshop received an overview of modern computer-based approaches for exploring NP discovery in the "omics" age. The invited experts gave keynote lectures, trained participants in hands-on sessions, and held round table discussions. This was followed by oral presentations with much interaction between the speakers and the audience. Selected applicants (early-career scientists) were offered the opportunity to give oral presentations (15 min) and present posters in the form of flash presentations (5 min) upon submission of an abstract. The final program available on the workshop website ( https://caismd.indiayouth.info/ ) comprised of 4 keynote lectures (KLs), 12 oral presentations (OPs), 2 round table discussions (RTDs), and 5 hands-on sessions (HSs). This meeting report also references internet resources for computational biology in the area of secondary metabolites that are of use outside of the workshop areas and will constitute a long-term valuable source for the community. The workshop concluded with an online survey form to be completed by speakers and participants for the goal of improving any subsequent editions.

8.
Adv Nutr ; 11(2): 200-215, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31386148

RESUMO

While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research.


Assuntos
Biomarcadores/análise , Dieta , Metabolômica/métodos , Biomarcadores/sangue , Biomarcadores/urina , Alimentos , Genômica , Humanos , Metagenômica , Fenômenos Fisiológicos da Nutrição/genética , Ciências da Nutrição/métodos , Estado Nutricional , Reprodutibilidade dos Testes
9.
Metabolites ; 9(4)2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013937

RESUMO

Metabolite identification for untargeted metabolomics is often hampered by the lack of experimentally collected reference spectra from tandem mass spectrometry (MS/MS). To circumvent this problem, Competitive Fragmentation Modeling-ID (CFM-ID) was developed to accurately predict electrospray ionization-MS/MS (ESI-MS/MS) spectra from chemical structures and to aid in compound identification via MS/MS spectral matching. While earlier versions of CFM-ID performed very well, CFM-ID's performance for predicting the MS/MS spectra of certain classes of compounds, including many lipids, was quite poor. Furthermore, CFM-ID's compound identification capabilities were limited because it did not use experimentally available MS/MS spectra nor did it exploit metadata in its spectral matching algorithm. Here, we describe significant improvements to CFM-ID's performance and speed. These include (1) the implementation of a rule-based fragmentation approach for lipid MS/MS spectral prediction, which greatly improves the speed and accuracy of CFM-ID; (2) the inclusion of experimental MS/MS spectra and other metadata to enhance CFM-ID's compound identification abilities; (3) the development of new scoring functions that improves CFM-ID's accuracy by 21.1%; and (4) the implementation of a chemical classification algorithm that correctly classifies unknown chemicals (based on their MS/MS spectra) in >80% of the cases. This improved version called CFM-ID 3.0 is freely available as a web server. Its source code is also accessible online.

10.
J Cheminform ; 11(1): 2, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30612223

RESUMO

BACKGROUND: A number of computational tools for metabolism prediction have been developed over the last 20 years to predict the structures of small molecules undergoing biological transformation or environmental degradation. These tools were largely developed to facilitate absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, although there is now a growing interest in using such tools to facilitate metabolomics and exposomics studies. However, their use and widespread adoption is still hampered by several factors, including their limited scope, breath of coverage, availability, and performance. RESULTS: To address these limitations, we have developed BioTransformer, a freely available software package for accurate, rapid, and comprehensive in silico metabolism prediction and compound identification. BioTransformer combines a machine learning approach with a knowledge-based approach to predict small molecule metabolism in human tissues (e.g. liver tissue), the human gut as well as the environment (soil and water microbiota), via its metabolism prediction tool. A comprehensive evaluation of BioTransformer showed that it was able to outperform two state-of-the-art commercially available tools (Meteor Nexus and ADMET Predictor), with precision and recall values up to 7 times better than those obtained for Meteor Nexus or ADMET Predictor on the same sets of pharmaceuticals, pesticides, phytochemicals or endobiotics under similar or identical constraints. Furthermore BioTransformer was able to reproduce 100% of the transformations and metabolites predicted by the EAWAG pathway prediction system. Using mass spectrometry data obtained from a rat experimental study with epicatechin supplementation, BioTransformer was also able to correctly identify 39 previously reported epicatechin metabolites via its metabolism identification tool, and suggest 28 potential metabolites, 17 of which matched nine monoisotopic masses for which no evidence of a previous report could be found. CONCLUSION: BioTransformer can be used as an open access command-line tool, or a software library. It is freely available at https://bitbucket.org/djoumbou/biotransformerjar/ . Moreover, it is also freely available as an open access RESTful application at www.biotransformer.ca , which allows users to manually or programmatically submit queries, and retrieve metabolism predictions or compound identification data.

11.
J Cheminform ; 8: 61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867422

RESUMO

BACKGROUND: Scientists have long been driven by the desire to describe, organize, classify, and compare objects using taxonomies and/or ontologies. In contrast to biology, geology, and many other scientific disciplines, the world of chemistry still lacks a standardized chemical ontology or taxonomy. Several attempts at chemical classification have been made; but they have mostly been limited to either manual, or semi-automated proof-of-principle applications. This is regrettable as comprehensive chemical classification and description tools could not only improve our understanding of chemistry but also improve the linkage between chemistry and many other fields. For instance, the chemical classification of a compound could help predict its metabolic fate in humans, its druggability or potential hazards associated with it, among others. However, the sheer number (tens of millions of compounds) and complexity of chemical structures is such that any manual classification effort would prove to be near impossible. RESULTS: We have developed a comprehensive, flexible, and computable, purely structure-based chemical taxonomy (ChemOnt), along with a computer program (ClassyFire) that uses only chemical structures and structural features to automatically assign all known chemical compounds to a taxonomy consisting of >4800 different categories. This new chemical taxonomy consists of up to 11 different levels (Kingdom, SuperClass, Class, SubClass, etc.) with each of the categories defined by unambiguous, computable structural rules. Furthermore each category is named using a consensus-based nomenclature and described (in English) based on the characteristic common structural properties of the compounds it contains. The ClassyFire webserver is freely accessible at http://classyfire.wishartlab.com/. Moreover, a Ruby API version is available at https://bitbucket.org/wishartlab/classyfire_api, which provides programmatic access to the ClassyFire server and database. ClassyFire has been used to annotate over 77 million compounds and has already been integrated into other software packages to automatically generate textual descriptions for, and/or infer biological properties of over 100,000 compounds. Additional examples and applications are provided in this paper. CONCLUSION: ClassyFire, in combination with ChemOnt (ClassyFire's comprehensive chemical taxonomy), now allows chemists and cheminformaticians to perform large-scale, rapid and automated chemical classification. Moreover, a freely accessible API allows easy access to more than 77 million "ClassyFire" classified compounds. The results can be used to help annotate well studied, as well as lesser-known compounds. In addition, these chemical classifications can be used as input for data integration, and many other cheminformatics-related tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA