Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39009031

RESUMO

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.


Assuntos
Candida , Lignina , Engenharia Metabólica , Riboflavina , Xilose , Lignina/metabolismo , Riboflavina/metabolismo , Riboflavina/biossíntese , Candida/metabolismo , Candida/genética , Xilose/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Fermentação , Reatores Biológicos/microbiologia , D-Xilulose Redutase/metabolismo , D-Xilulose Redutase/genética , Arabinose/metabolismo
2.
Yeast ; 40(8): 360-366, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36751139

RESUMO

Flavin mononucleotide (FMN, riboflavin-5'-phosphate) is flavin coenzyme synthesized in all living organisms from riboflavin (vitamin B2 ) after phosphorylation in the reaction catalyzed by riboflavin kinase. FMN has several applications mostly as yellow colorant in food industry due to 200 times better water solubility as compared to riboflavin. Currently, FMN is produced by chemical phosphorylation of riboflavin, however, final product contains up to 25% of flavin impurities. Microbial overproducers of FMN are known, however, they accumulate this coenzyme in glucose medium. Current work shows that the recombinant strains of the flavinogenic yeast Candida famata with overexpressed FMN1 gene coding for riboflavin kinase in the recently isolated by us advanced riboflavin producers due to overexpression of the structural and regulatory genes of riboflavin synthesis and of the putative exporter of riboflavin from the cell, synthesized elevated amounts of FMN in the media not only with glucose but also in lactose and cheese whey. Activation of FMN accumulation on lactose and cheese whey was especially strong in the strains which expressed the gene of transcription activator SEF1 under control of the lactose-induced LAC4 promoter. The accumulation of this coenzyme by the washed cells of the best recombinant strain achieved 540 mg/L in the cheese whey supplemented only with ammonium sulfate during 48 h in shake flask experiments.


Assuntos
Debaryomyces , Mononucleotídeo de Flavina , Saccharomyces cerevisiae , Candida/genética , Lactose , Riboflavina , Glucose
3.
Microb Cell Fact ; 22(1): 132, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474952

RESUMO

BACKGROUND: Actinomycetes Streptomyces davaonensis and Streptomyces cinnabarinus synthesize a promising broad-spectrum antibiotic roseoflavin, with its synthesis starting from flavin mononucleotide and proceeding through an immediate precursor, aminoriboflavin, that also has antibiotic properties. Roseoflavin accumulation by the natural producers is rather low, whereas aminoriboflavin accumulation is negligible. Yeasts have many advantages as biotechnological producers relative to bacteria, however, no recombinant producers of bacterial antibiotics in yeasts are known. RESULTS: Roseoflavin biosynthesis genes have been expressed in riboflavin- or FMN-overproducing yeast strains of Candida famata and Komagataella phaffii. Both these strains accumulated aminoriboflavin, whereas only the latter produced roseoflavin. Aminoriboflavin isolated from the culture liquid of C. famata strain inhibited the growth of Staphylococcus aureus (including MRSA) and Listeria monocytogenes. Maximal accumulation of aminoriboflavin in shake-flasks reached 1.5 mg L- 1 (C. famata), and that of roseoflavin was 5 mg L- 1 (K. phaffii). Accumulation of aminoriboflavin and roseoflavin by K. phaffii recombinant strain in a bioreactor reached 22 and 130 mg L- 1, respectively. For comparison, recombinant strains of the native bacterial producer S. davaonensis accumulated near one-order less of roseoflavin while no recombinant producers of aminoriboflavin was reported at all. CONCLUSIONS: Yeast recombinant producers of bacterial antibiotics aminoriboflavin and roseoflavin were constructed and evaluated.


Assuntos
Antibacterianos , Eucariotos , Antibacterianos/farmacologia , Riboflavina
4.
Microb Cell Fact ; 21(1): 161, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964025

RESUMO

BACKGROUND: Riboflavin is a precursor of FMN and FAD which act as coenzymes of numerous enzymes. Riboflavin is an important biotechnological commodity with annual market sales exceeding nine billion US dollars. It is used primarily as a component of feed premixes, a food colorant, a component of multivitamin mixtures and medicines. Currently, industrial riboflavin production uses the bacterium, Bacillus subtilis, and the filamentous fungus, Ashbya gossypii, and utilizes glucose and/or oils as carbon substrates. RESULTS: We studied riboflavin biosynthesis in the flavinogenic yeast Candida famata that is a genetically stable riboflavin overproducer. Here it was found that the wild type C. famata is characterized by robust growth on lactose and cheese whey and the engineered strains also overproduce riboflavin on whey. The riboflavin synthesis on whey was close to that obtained on glucose. To further enhance riboflavin production on whey, the gene of the transcription activator SEF1 was expressed under control of the lactose-induced promoter of the native ß-galactosidase gene LAC4. These transformants produced elevated amounts of riboflavin on lactose and especially on whey. The strain with additional overexpression of gene RIB6 involved in conversion of ribulose-5-phosphate to riboflavin precursor had the highest titer of accumulated riboflavin in flasks during cultivation on whey. Activation of riboflavin synthesis was also obtained after overexpression of the GND1 gene that is involved in the synthesis of the riboflavin precursor ribulose-5-phosphate. The best engineered strains accumulated 2.5 g of riboflavin/L on whey supplemented only with (NH4)2SO4 during batch cultivation in bioreactor with high yield (more than 300 mg/g dry cell weight). The use of concentrated whey inhibited growth of wild-type and engineered strains of C. famata, so the mutants tolerant to concentrated whey were isolated. CONCLUSIONS: Our data show that the waste of dairy industry is a promising substrate for riboflavin production by C. famata. Possibilities for using the engineered strains of C. famata to produce high-value commodity (riboflavin) from whey are discussed.


Assuntos
Queijo , Candida/genética , Mononucleotídeo de Flavina , Glucose , Lactose , Fosfatos , Riboflavina , Soro do Leite
5.
Microb Cell Fact ; 21(1): 162, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964033

RESUMO

BACKGROUND: Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied. RESULTS: We isolated an insertional mutant of O. polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O. polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O. polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20-40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains. CONCLUSIONS: This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.


Assuntos
Proteínas Fúngicas/metabolismo , Xilose , Etanol/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Pichia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilose/metabolismo
6.
Yeast ; 37(9-10): 467-473, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32401376

RESUMO

Candida famata is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2 ) in response to iron limitation. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The corresponding protein and gene have not been identified in yeasts. At the same time, the corresponding gene BCRP has been identified in mammal mammary glands. Several homologs of the mammal BCRP gene encoding putative riboflavin efflux protein (excretase) were identified in Debaryomyces hansenii. The closest homolog was expressed under the control of D. hansenii TEF1 promoter in the riboflavin overproducing strain of C. famata. Resulted transformants overexpressed the corresponding gene and produced 1.4- to 1.8-fold more riboflavin as compared with the parental strain. They also were characterized by overexpression of RIB1 and RIB6 genes of riboflavin synthesis and exhibited elevated specific activity of GTP-cyclohydrolase II. Membrane localization of the riboflavin excretase was confirmed by fluorescent microscopy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Candida/genética , Proteínas Fúngicas/genética , Mamíferos/genética , Riboflavina/metabolismo , Animais , Candida/classificação , Clonagem Molecular , DNA Fúngico/genética , Riboflavina/biossíntese
7.
J Ind Microbiol Biotechnol ; 47(1): 109-132, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31637550

RESUMO

This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.


Assuntos
Etanol/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Fermentação , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Xilose/metabolismo
8.
FEMS Yeast Res ; 18(2)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438555

RESUMO

Lignocellulosic biomass belongs to main sustainable renewable sources for global energy supply. One of the main challenges in the conversion of saccharified lignocellulosic biomass into bioethanol is the utilization of xylose, since lignocellulosic feedstocks contain a significant amount of this pentose. The non-conventional thermotolerant yeast Ogataea polymorpha naturally ferments xylose to ethanol at elevated temperatures (45°C). Studying the molecular mechanisms of regulation of xylose metabolism is a promising way toward increased xylose conversion to ethanol. Insertional mutagenesis was applied to yeast O. polymorpha to identify genes involved in regulation of xylose fermentation. An insertional mutant selected as 3-bromopyruvate resistant strain possessed 50% increase in ethanol production as compared to the parental strain. Increase in ethanol production was caused by disruption of an autophagy-related gene ATG13. Involvement of Atg13 in regulation of xylose fermentation was confirmed by deletion of that gene. The atg13Δ strain also produced an elevated amount of ethanol from xylose. Insertion in ATG13 gene did not disrupt HORMA domain and did not lead to defects in autophagy whereas knock out of this gene impaired autophagy process. We suggest that Atg13 plays two different functions and its role in regulation of xylose fermentation differs from that in autophagy.


Assuntos
Ascomicetos/fisiologia , Proteínas Relacionadas à Autofagia/genética , Etanol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Xilose/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Ordem dos Genes , Vetores Genéticos/genética , Engenharia Metabólica , Mutação , Pichia/fisiologia
9.
Microb Cell Fact ; 16(1): 36, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245828

RESUMO

BACKGROUND: Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerevisiae, organism, which does not metabolize xylose, gene CAT8 encodes a Zn-cluster transcriptional activator necessary for expression of genes involved in gluconeogenesis, respiration, glyoxylic cycle and ethanol utilization. Xylose is a carbon source that could be fermented to ethanol and simultaneously could be used in gluconeogenesis for hexose synthesis. This potentially suggests involvement of CAT8 in xylose metabolism. RESULTS: Here, the role of CAT8 homolog in the natural xylose-fermenting thermotolerant yeast O. polymorpha was characterized. The CAT8 ortholog was identified in O. polymorpha genome and deleted both in the wild-type strain and in advanced ethanol producer from xylose. Constructed cat8Δ strain isolated from wild strain showed diminished growth on glycerol, ethanol and xylose as well as diminished respiration on the last substrate. At the same time, cat8Δ mutant isolated from the best available O. polymorpha ethanol producer showed only visible defect in growth on ethanol. CAT8 deletant was characterized by activated transcription of genes XYL3, DAS1 and RPE1 and slight increase in the activity of several enzymes involved in xylose metabolism and alcoholic fermentation. Ethanol production from xylose in cat8Δ mutants in the background of wild-type strain and the best available ethanol producer from xylose increased for 50 and 30%, respectively. The maximal titer of ethanol during xylose fermentation was 12.5 g ethanol/L at 45 °C. Deletion of CAT8 did not change ethanol production from glucose. Gene CAT8 was also overexpressed under control of the strong constitutive promoter GAP of glyceraldehyde-3-phosphate dehydrogenase. Corresponding strains showed drop in ethanol production in xylose medium whereas glucose alcoholic fermentation remained unchanged. Available data suggest on specific role of Cat8 in xylose alcoholic fermentation. CONCLUSIONS: The CAT8 gene is one of the first identified genes specifically involved in regulation of xylose alcoholic fermentation in the natural xylose-fermenting yeast O. polymorpha.


Assuntos
Fermentação , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Pichia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Engenharia Genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Glicerol/metabolismo , Temperatura Alta , Mutação , Pichia/crescimento & desenvolvimento , Pichia/metabolismo
10.
Appl Microbiol Biotechnol ; 101(11): 4403-4416, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28280870

RESUMO

Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.


Assuntos
Glucose/metabolismo , Glicerol/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Anaerobiose , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Biomassa , Etanol/metabolismo , Fermentação , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
11.
Yeast ; 33(8): 471-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256876

RESUMO

Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Pichia/enzimologia , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Álcool Desidrogenase/genética , Biotecnologia/métodos , Fermentação , Engenharia Metabólica/métodos , Metanol/metabolismo , Pichia/genética , Piruvato Descarboxilase/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Regulação para Cima
12.
BMC Biotechnol ; 14: 42, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24884834

RESUMO

BACKGROUND: The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. RESULTS: Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. CONCLUSION: Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcool Desidrogenase/genética , Fosfatase Alcalina/genética , Biomassa , Mutagênese Insercional , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
13.
Microb Cell Fact ; 13: 122, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25145644

RESUMO

BACKGROUND: The methylotrophic yeast, Hansenula polymorpha is an industrially important microorganism, and belongs to the best studied yeast species with well-developed tools for molecular research. The complete genome sequence of the strain NCYC495 of H. polymorpha is publicly available. Some of the well-studied strains of H. polymorpha are known to ferment glucose, cellobiose and xylose to ethanol at elevated temperature (45 - 50°C) with ethanol yield from xylose significantly lower than that from glucose and cellobiose. Increased yield of ethanol from xylose was demonstrated following directed metabolic changes but, still the final ethanol concentration achieved is well below what is considered feasible for economic recovery by distillation. RESULTS: In this work, we describe the construction of strains of H. polymorpha with increased ethanol production from xylose using an ethanol-non-utilizing strain (2EthOH-) as the host. The transformants derived from 2EthOH- overexpressing modified xylose reductase (XYL1m) and native xylitol dehydrogenase (XYL2) were isolated. These transformants produced 1.5-fold more ethanol from xylose than the original host strain. The additional overexpression of XYL3 gene coding for xylulokinase, resulted in further 2.3-fold improvement in ethanol production with no measurable xylitol formed during xylose fermentation. The best ethanol producing strain obtained by metabolic engineering approaches was subjected to selection for resistance to the known inhibitor of glycolysis, the anticancer drug 3-bromopyruvate. The best mutant selected had an ethanol yield of 0.3 g/g xylose and produced up to 9.8 g of ethanol/l during xylose alcoholic fermentation at 45°C without correction for ethanol evaporation. CONCLUSIONS: Our results indicate that xylose conversion to ethanol at elevated temperature can be significantly improved in H. polymorpha by combining methods of metabolic engineering and classical selection.


Assuntos
Adaptação Fisiológica , Etanol/metabolismo , Fermentação , Engenharia Metabólica/métodos , Metano/metabolismo , Pichia/metabolismo , Temperatura , Xilose/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Aldeído Redutase/metabolismo , Antineoplásicos/farmacologia , D-Xilulose Redutase/metabolismo , Fermentação/efeitos dos fármacos , Pichia/efeitos dos fármacos , Pichia/enzimologia , Pichia/isolamento & purificação , Plasmídeos/metabolismo , Piruvatos/farmacologia , Transformação Genética/efeitos dos fármacos , Xilitol/metabolismo
14.
Front Bioeng Biotechnol ; 11: 1106973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865030

RESUMO

This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.

15.
Vet Comp Oncol ; 21(2): 270-278, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808425

RESUMO

Mammary tumours constitute more than half of neoplasms in female dogs from different countries. Genome sequences are associated with cancer susceptibility but there is little information available about genetic polymorphisms of glutathione S-transferase P1 (GSTP1) in canine cancers. The aim of this study was to find single nucleotide polymorphisms (SNPs) in GSTP1 of dogs (Canis lupus familiaris) with mammary tumours compared to healthy dogs and to determine the association between GSTP1 polymorphisms and the occurrence of these tumours. The study population included 36 client-owned female dogs with mammary tumours and 12 healthy female dogs, with no previous diagnosis of cancer. DNA was extracted from blood and amplified by PCR assay. PCR-products were sequenced by Sanger method and analysed manually. The 33 polymorphisms were found in GSTP1: 1 coding SNP (exon 4), 24 non-coding SNPs (9 in exon 1), 7 deletions and 1 insertion. The 17 polymorphisms have been found in introns 1, 4, 5 and 6. The dogs with mammary tumours have significant difference from healthy in SNPs I4 c.1018 + 123 T > C (OR 13.412, 95%CI 1.574-114.267, P = .001), I5 c.1487 + 27 T > C (OR 10.737, 95%CI 1.260-91.477, P = .004), I5 c.1487 + 842 G > C (OR 4.714, 95% CI 1.086-20.472, P = .046) and I6 c.2481 + 50 A > G (OR 12.000, 95% CI 1.409-102.207, P = .002). SNP E5 c.1487 T > C and I5 c.1487 + 829 delG also differed significantly (P = .03) but not to the confidence interval. The study, for the first time, showed a positive association of SNPs in GSTP1 with mammary tumours of dogs, that can possibly be used to predict the occurrence of this pathology.


Assuntos
Doenças do Cão , Glutationa Transferase , Cães , Animais , Feminino , Glutationa Transferase/genética , Glutationa S-Transferase pi/genética , Doenças do Cão/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase/veterinária , Predisposição Genética para Doença , Estudos de Casos e Controles , Genótipo
16.
Yeast ; 29(11): 453-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23108915

RESUMO

Candida famata (Candida flareri) belongs to the group of so-called 'flavinogenic yeasts', capable of riboflavin oversynthesis under condition of iron starvation. Some strains of C. famata belong to the most flavinogenic organisms known and were used for industrial production of riboflavin for a long time in the USA. C. famata is characterized by high salt tolerance, growing at NaCl concentrations of up to 2.5 M. Development of basic tools for the metabolic engineering of C. famata, such as a transformation system, selective markers, insertional mutagenesis, a reporter system and others, are described. The developed tools were used for cloning and identification of structural and regulatory genes of riboflavin synthesis. The construction of improved yeast strains producing riboflavin, FMN and FAD, based on the industrial riboflavin-producing strain dep8 and its non-reverting analogue AF4, is also described.


Assuntos
Candida/genética , Candida/metabolismo , Ferro/metabolismo , Engenharia Metabólica/métodos , Riboflavina/metabolismo , Biotecnologia/métodos , Candida/classificação , Redes e Vias Metabólicas/genética , Solução Salina Hipertônica/metabolismo , Estados Unidos
17.
BMC Biotechnol ; 11: 58, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21612631

RESUMO

BACKGROUND: The detection and quantification of uric acid in human physiological fluids is of great importance in the diagnosis and therapy of patients suffering from a range of disorders associated with altered purine metabolism, most notably gout and hyperuricaemia. The fabrication of cheap and reliable urate-selective amperometric biosensors is a challenging task. RESULTS: A urate-selective microbial biosensor was developed using cells of the recombinant thermotolerant methylotrophic yeast Hansenula polymorpha as biorecognition element. The construction of uricase (UOX) producing yeast by over-expression of the uricase gene of H. polymorpha is described. Following a preliminary screening of the transformants with increased UOX activity in permeabilized yeast cells the optimal cultivation conditions for maximal UOX yield namely a 40-fold increase in UOX activity were determined.The UOX producing cells were coupled to horseradish peroxidase and immobilized on graphite electrodes by physical entrapment behind a dialysis membrane. A high urate selectivity with a detection limit of about 8 µM was found. CONCLUSION: A strain of H. polymorpha overproducing UOX was constructed. A cheap urate selective microbial biosensor was developed.


Assuntos
Técnicas Biossensoriais/métodos , Pichia/metabolismo , Urato Oxidase/biossíntese , Ácido Úrico/análise , Clonagem Molecular , Técnicas Eletroquímicas/métodos , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Urato Oxidase/genética
18.
Metab Eng ; 13(1): 82-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21040798

RESUMO

Currently, the mutant of the flavinogenic yeast Candida famata dep8 isolated by classic mutagenesis and selection is used for industrial riboflavin production. Here we report on construction of a riboflavin overproducing strain of C. famata using a combination of random mutagenesis based on the selection of mutants resistant to different antimetabolites as well as rational approaches of metabolic engineering. The conventional mutagenesis involved consecutive selection for resistance to riboflavin structural analog 7-methyl-8-trifluoromethyl-10-(1'-d-ribityl)isoalloxazine), 8-azaguanine, 6-azauracil, 2-diazo-5-oxo-L-norleucine and guanosine as well as screening for yellow colonies at high pH. The metabolic engineering approaches involved introduction of additional copies of transcription factor SEF1 and IMH3 (coding for IMP dehydrogenase) orthologs from Debaryomyces hansenii, and the homologous genes RIB1 and RIB7, encoding GTP cyclohydrolase II and riboflavin synthetase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the aforementioned genes in riboflavin overproducer AF-4 obtained by classical selection resulted in a 4.1-fold increase in riboflavin production in shake-flask experiments. D. hansenii IMH3 and modified ARO4 genes conferring resistance to mycophenolic acid and fluorophenylalanine, respectively, were successfully used as new dominant selection markers for C. famata.


Assuntos
Candida/classificação , Candida/metabolismo , Proteínas Fúngicas/metabolismo , Melhoramento Genético/métodos , Riboflavina/biossíntese , Transdução de Sinais/fisiologia , Candida/genética , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Recombinantes/metabolismo , Riboflavina/genética , Especificidade da Espécie
19.
Methods Mol Biol ; 2280: 15-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751426

RESUMO

The approaches used by the authors to design the Candida famata strains capable to overproduce riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are described. The metabolic engineering approaches include overexpression of SEF1 gene encoding positive regulator of riboflavin biosynthesis, IMH3 (coding for IMP dehydrogenase) orthologs from another species of flavinogenic yeast Debaryomyces hansenii, and the homologous genes RIB1 and RIB7 encoding GTP cyclohydrolase II and riboflavin synthase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the above mentioned genes in the genetically stable riboflavin overproducer AF-4 obtained by classical selection resulted in fourfold increase of riboflavin production in shake flask experiments.Overexpression of engineered enzymes phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase catalyzing the initial steps of purine nucleotide biosynthesis enhances riboflavin synthesis in the flavinogenic yeast C. famata even more.Recombinant strains of C. famata containing FMN1 gene from D. hansenii encoding riboflavin kinase under control of the strong constitutive TEF1 promoter were constructed. Overexpression of the FMN1 gene in the riboflavin-producing mutant led to the 30-fold increase of the riboflavin kinase activity and 400-fold increase of FMN production in the resulting recombinant strains which reached maximally 318.2 mg/L.FAD overproducing strains of C. famata were also constructed. This was achieved by overexpression of FAD1 gene from D. hansenii in C. famata FMN overproducing strain. The 7- to 15-fold increase in FAD synthetase activity as compared to the wild-type strain and FAD accumulation into cultural medium were observed. The maximal FAD titer 451.5 mg/L was achieved.


Assuntos
Candida/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Engenharia Metabólica/métodos , Técnicas de Cultura Celular por Lotes , Vias Biossintéticas , Candida/genética , Candida/metabolismo , Mononucleotídeo de Flavina/biossíntese , Mononucleotídeo de Flavina/genética , Flavina-Adenina Dinucleotídeo/biossíntese , Flavina-Adenina Dinucleotídeo/genética , Riboflavina/biossíntese , Riboflavina/genética
20.
Methods Mol Biol ; 2280: 31-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33751427

RESUMO

Many microorganisms are capable of riboflavin oversynthesis and accumulation in a medium, suggesting that they efficiently excrete riboflavin. The mechanisms of riboflavin efflux in microorganisms remain elusive. Candida famata are representatives of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B2) in response to iron limitation. The riboflavin overproducers of this yeast species have been obtained by classical mutagenesis and metabolic engineering. Overproduced riboflavin accumulates in the cultural medium rather than in the cells suggesting existence of the special mechanisms involved in riboflavin excretion. The appropriate protein and gene have not been identified in yeasts till recently. At the same time, the gene BCRP (breast cancer resistance protein) has been identified in mammal mammary glands. Several homologs of the mammal BCRP gene encoding putative riboflavin efflux protein (excretase) were identified in the flavinogenic yeasts Debaryomyces hansenii and C. famata. Here we evaluate the yeast homologs of BCRP with respect to improvement of a riboflavin production by C. famata. The closest homologs from D. hansenii or C. famata were expressed under the control of TEF1 promoter of these yeasts in the wild-type and riboflavin-overproducing strains of C. famata. Resulted transformants overexpressed the corresponding genes (designated as DhRFE and CfRFE) and produced 1.4- to 6-fold more riboflavin as compared to the corresponding parental strains. They also were characterized by overexpression of RIB1 and RIB6 genes which encode the first and the last structural enzymes of riboflavin synthesis and exhibited elevated specific activity of GTP cyclohydrolase II. Thus, overexpression of yeast homolog of mammal gene BCRP may be useful to increase the riboflavin yield in a riboflavin production process using a recombinant overproducing C. famata strain or other flavinogenic microorganisms.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Candida/crescimento & desenvolvimento , Engenharia Metabólica/métodos , Riboflavina/biossíntese , Candida/genética , Candida/metabolismo , Clonagem Molecular , Meios de Cultura/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fator 1 de Elongação de Peptídeos/genética , Regiões Promotoras Genéticas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA